SYNTHESIS OF ZnO NANORODS BY HYDROTHERMAL METHOD FOR GAS SENSOR APPLICATIONS

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

55
Reader(s)
123
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 5 , ISSUE 1 (March 2012) > List of articles

SYNTHESIS OF ZnO NANORODS BY HYDROTHERMAL METHOD FOR GAS SENSOR APPLICATIONS

Sarika D. Shinde / G. E. Patil / D. D. Kajale / D. V. Ahire / V. B. Gaikwad / G. H. Jain

Keywords : Hydrothermal, CTAB, ZnO nanorods, H2S gas sensor, gas response.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 5, Issue 1, Pages 57-70, DOI: https://doi.org/10.21307/ijssis-2017-470

License : (CC BY-NC-ND 4.0)

Received Date : 02-January-2012 / Accepted: 02-February-2012 / Published Online: 01-March-2012

ARTICLE

ABSTRACT

ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated for various interfering gases such as CO2, CO, Ethanol, NH3 and H2S etc at operating temperature from 30o (room temperature) to 300oC. The results indicate that the ZnO nanorod thick films showed much better sensitivity and stability than the conventional materials to H2S gas at 30oC. The nanoshaped pillar can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, Noyes Publications, New Jersey, USA, 2001
[2] T. Siyama, A. Kato, A new detector for gaseous components using semiconductor thin film, Anal. Chem. 34 (1962) pp.1502–1503.
[3] J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z. Li, Emulsion synthesis structure and gas sensing properties of nanometer ZnO, J. Inorg. Chem. 14 (1998) pp.355–359.
[4] A.A. Tomchenko, G.P. Harmer, B.T. Marquis, J.W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sens. Actuators B 93 (2003) pp.126–134.
[5] M. Law, H. Kind, F. Kim, B. Messer, P. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angwe. Chem. Int. Ed. 41 (2002) pp.2405– 2408.
[6] C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C.W. Zhou, In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 82 (2003) pp.1613–1615.
[7] A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater. 15 (2003) pp.997–1000.
[8] N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catal. Surveys Asia 1 (2003) pp.63–75.
[9] X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys. 78 (2002) pp.99–104.
[10] Z.Q. Li, Y.J. Xiong, Y. Xie, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem. 42 (2003) pp.8105–8109.
[11] H.J. Zhai, W.H. Wu, F. Lu, H.S. Wang, Effects of ammonia and CTAB on morphologiesof ZnO nano-and micromaterials under solvothermal process, Mater. Chem. Phys. 112 (2008) pp.1024–1028.
[12] D.F. Zhang, L.D. Sun, J.L. Yin, C.H. Yan, Attachment-driven morphology enhancement of regular ZnO nanowires, J. Phys. Chem. B 109 (2005) pp.8786–8790.
[13] R.C. Singh, O. Singh, M.P. Singh, P.S. Chandi, Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors, Sens. Actuators B 135 (2008) pp.352–357.
[14] Z. Yang, Y. Huang, G. Chen, Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels, Sens. Actuators B 140 (2009) pp.549–556.
[15] N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong, S. Choopun, Ethanol sensor based on ZnO and Au-doped ZnO nanowires, Ceramics Int. 34 (2008) pp.823-826.
[16] O. Lupan, G. Chai, L. Chow, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectron. Eng. 85 (2008) pp.2220–2225.
[17] Y.L. Cao, P.F. Hu, W.Y. Pan, Y.D. Huang, D.Z. Jia, Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction, Sens. Actuators B 134 (2008) pp.462–466.
[18] G. H. Jain, L. A. Patil, M. S. Wagh, D. R. Patil, S. A. Patil, D. P. Amalnerkar, Surface modified BaTiO3 thick film resistors as H2S gas sensors, Sensors and Actuators B: Chemical 117 (2006) pp.159-165.
[19] G. H. Jain, MOS gas sensors: What determines our choice?, Proceedings of the Fifth International Conference on Sensing Technology 2011, Palmerston North, New Zealand, Nov. 28 – Dec, 1, 2011, pp. 71-77.
[20] E. W. Shi, W.B.G. Wang, Z. Zhong, Understanding and Controlling the Morphology of ZnO Crystallites under Hydrothermal Conditions, Cryst. Res. Technol. 32 (1997) pp.659.
[21] X. M. Sun, X. Chen, Z.X. Deng, Y.D. Li, CTAB-assisted hydrothermal orientation growth of. ZnO nanorods, Mater. Chem. Phy. 78 pp. (2002) 99.
[22] O. Wan, Q.H. Li, J.Y. Chen, H.T. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 3654–3656.
[23] J.A. Dean, Lange’s Handbook of Chemistry, Chinese ed., Science Press, 2003, pp. 43–54 (Chapter 4).
[24] T. Zhang, Y. Zeng, H.T. Fan, L.J. Wang, R. Wang, W.Y. Fu, H.B. Yang, Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process, J. Phys. D: Appl. Phys. 42 (2009) 045103.

EXTRA FILES

COMMENTS