SYNTHESIS OF SrTiO3 NANOPOWDER BY SOL-GEL- HYDROTHEMAL METHOD FOR GAS SENSING APPLICATION

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

75
Reader(s)
194
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 5 , ISSUE 2 (June 2012) > List of articles

SYNTHESIS OF SrTiO3 NANOPOWDER BY SOL-GEL- HYDROTHEMAL METHOD FOR GAS SENSING APPLICATION

D. D. Kajale / G. E. Patil / V. B. Gaikwad / S. D. Shinde / D. N. Chavan / N. K. Pawar / S. R. Shirsath / G. H. Jain *

Keywords : SrTiO3, sol-gel-hydrothermal, nanocrystalline, thick film, gas response, H2S gas sensor.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 5, Issue 2, Pages 382-400, DOI: https://doi.org/10.21307/ijssis-2017-487

License : (CC BY-NC-ND 4.0)

Received Date : 01-April-2012 / Accepted: 10-May-2012 / Published Online: 01-June-2012

ARTICLE

ABSTRACT

Strontium titanate (SrTiO3) nanopowder has been synthesized through a sol-gel-hydrothermal method. The X-ray diffraction studies of SrTiO3 nanopowder have shown that the as-prepared powder was single phase, crystalline, and has a cubic perovskite structure (ABO3) with a lattice constant a = 3.903 Å. The particle size calculated from FWHM was ∼22 nm. SrTiO3 nanopowder was examined using thermo gravimetric analysis; differential thermal analysis and UV-visible absorption spectroscopy. The transmission electron microscopic investigations have shown that the particle size of the as-prepared powder has a mean size of 34 nm. Then highly sensitive and selective sensors to H2S based on glass substrate were fabricated successfully by screen-printing technique. Sensitivity, selectivity, response time, and recovery time of the sensors were systematically investigated as a function of operating temperature, using H2S, CO, CO2, H2, Cl2, LPG, C2H5OH, O2, NH3 and NO2 as test gases. The sensitivity was found to lie below and around the ppm level for H2S gas at 150 oC.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P.
Alivisatos, “Shape control of CdSe nanocrystals”, Nature, Vol. 404, No. 6773, March
2000, pp. 59-61.
[2] M. Cardona, “Optical Properties and Band Structure of SrTiO3 and BaTiO3”, Physical
Review, Vol. 140, No. 2A, 1965, pp. 651-655.
[3] C. L. Jia, K. Urban, S. Hoffmann, R. J. Waser, “Microstructure of columnar-grained SrTiO3 and BaTiO3 thin films prepared by chemical solution deposition” Journal of Materials Research Vol. 13, No. 08, 1998, 2206-2217.
[4] J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, “Room-temperature ferroelectricity in strained SrTiO3”, Nature, Vol. 430, No. 7001, August 2004, pp. 758-761.
[5] P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher, M. Dressel, “Synthesis and Characterization of Nanocrystalline SrTiO3” J. Am. Ceram. Soc. Vol. 89, No. 09, September 2006, pp. 2804-2811.
[6] Y. Hu, O.K. Tan, J.S. Pan, H. Huang, W. Cao, “The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor”, Sens. Actuators B, Vol. 108, No. 1-2, July 2005, pp. 244-249.
[7] T. Hara, T. Ishiguro, “Oxygen sensitivity of SrTiO3 thin film prepared using atomic layer deposition”, Sens. Actuators B, Vol. 136, No. 02, March 2009, pp. 489-493.
[8] S. Burnside, J.E. Moser, K. Brooks, M. Gratzel, D.J. Cahen, “Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering”, J. Phys. Chem. B, Vol. 103, No. 43 August 1999, pp. 9328-9332.
[9] L. Pellegrino, I. Pallecchi, D. Marre, E. Bellingeri, S. Siri, “Fabrication of submicron-scale SrTiO3−δ devices by an atomic force microscope” Appl. Phys. Lett. Vol. 81, No. 20, November 2002, pp. 3849-3851.
[10] M.L. Moreira, J. Andres, V.M. Longo, M.S. Li, J.A. Varela, E. Longo, “Photoluminescent behavior of SrZrO3/SrTiO3 multilayer thin films”, Chem. Phys. Lett. Vol. 473, No. 4-6, May 2009, pp. 293- 298.
[11] K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, “Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts “, J. Phys. Chem. Vol. 90, No. 02, January 1986, pp. 292-295.
[12] M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential”, J. Am. Chem. Soc. Vol. 98, No. 10, May 1976, pp. 2774 -2779.
[13] S. Burnside, J.E. Moser, K. Brooks, M.J. Gratzel, “Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering”, Phys. Chem. B, Vol. 103, No. 43, August 1999 pp. 9328-9332.
[14] Rudiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R, “Nanosize ferroelectric oxides – tracking down the superparaelectric limit”, Appl. Phys A, Vol. 80, No. 06, March 2005, pp. 1247-1255.
[15] Wu X, Wu D, Liu X, “Negative pressure effects in SrTiO3 nanoparticles investigated by Raman spectroscopy”, Solid State Comm., Vol. 145, No. 5-6, February 2008, pp. 255-258.
[16] H. Tagawa, K. Igarashi, “Reaction of Strontium Carbonate with Anatase and Rutile” J. Am. Ceram. Soc. Vol. 69, No. 04, April 1986, pp.310-314.
[17] V.A. Trepakov, M.E. Savinov, I. Okhay, A. Tkach, P.M. Vilarinho, A.L. Kholkin, I. Gregora, L. Jastrabik, “Dielectric permittivity and Cr3+ impurity ion probe luminescence in SrTiO3 sol–gel ceramics”, J. Eur. Ceram. Soc. Vol. 27, No. 13-15, March 2007, pp. 3705-3707.
[18] G. Pfaff, “Sol–gel synthesis of strontium titanate powders of various compositions”, J. Mater. Chem. Vol.03, No. 07, July 1993, pp.721-724.
[19] Q. Pang, J.X. Shi, M.L. Gong, “Photoluminescent Properties of SrTiO3: Pr, Al Nanophosphors Synthesized by Microemulsion–Microwave Heating” J. Am. Ceram. Soc. Vol. 90, No. 12, December 2007, pp. 3943- 3946.
[20] P.K. Dutta, J.R. Gregg, “Hydrothermal synthesis of tetragonal barium titanate (BaTiO3)” Chem. Mater. Vol. 04, No. 04, July 1992, pp. 843-846.
[21] M.-H. Um, H. Kumazawa, “Hydrothermal synthesis of ferroelectric barium and strontium titanate extremely fine particles”, J. Mater. Sci. Vol. 35, No. 05, March 2000, pp. 1295-1300.
[22] S.C. Zhang, J.X. Liu, Y.X. Han, B.C. Chen, X.G. Li, “Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions”, Mater. Sci. Eng. B, Vol. 110, No. 01, June 2004 pp. 11-17.
[23] E.K. Nyutu, C.H. Chen, P.K. Dutta, S.L. Suib, “Effect of Microwave Frequency on Hydrothermal Synthesis of Nanocrystalline Tetragonal Barium Titanate” J. Phys. Chem. C, Vol. 112, No. 26, June 2008, pp. 9659-9667.
[24] E.R. Leite, C.M.G. Sousa, E. Longo, J.A. Varela, “Influence of polymerization on the synthesis of SrTiO3: Part II. Particle and agglomerate morphologies”, Ceram. Int., Vol. 21, No. 3, 1995, pp. 153- 158.
[25] S.M. Zanetti, E. Longo, J.A. Varela, E.R. Leite, “Microstructure and phase evolution of SrTiO3 thin films on Si prepared by the use of polymeric precursors”, Mater. Lett, Vol. 31, No. 3-6, June 1997, pp. 173-178.
[26] C.H. Chang, Y.H. Shen, “Synthesis and characterization of chromium doped SrTiO3 photocatalyst” Mater. Lett, Vol. 60, No. 01, January 2006, pp. 129-132.
[27] H. Cui, M. Zayat, D. Levy, “Controlled homogeneity of the precursor gel in the synthesis of SrTiO3 nanoparticles by an epoxide assisted sol–gel route” J. Non-Cryst. Solids, Vol. 353, No. 11-12, May 2007, pp. 1011-1016.
[28] Yoshimura M, “Importance of soft solution processing for advanced inorganic materials”, J Mater Res, Vol.- 13, No. 04,: April1998, pp.796-802.
[29] J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science Vol. 287, January 2000, pp. 622–625.
[30] W. Gopel, K. Schierbaum, SnO2 sensors current status and future prospects, Sens. Actuators B, Vol. 26, No. 1-3, June 1995, pp. 1–12.
[31] Y. Yamada, Y. Seno, Y. Masuoka, K. Yamashita, Nitrogen oxides sensing characteristics of Zn2SnO4 thin film, Sens. Actuators B, Vol. 49, No.3, July 1998, pp. 248–252.
[32] G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B, Vol. 107, No. 01, May 2005, pp. 209–232.
[33] G. Otulakowski, B.P. Kavanagh, Hydrogen sulfide in lung injury: therapeutic hope from a toxic gas? Anesthesiology, Vol. 113, No. 1, July 2010, pp. 4–6.
[34] D. Vuong, G. Sakai, K. Shimanoe, N. Yamazoe, Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size, Sens. Actuators B, Vol. 105, No. 2, March 2005, pp. 437–442.
[35] I. S. Hwang, J.K. Choi, S.J. Kim, K.Y. Dong, J.H. Kwon, B.K. Ju, J.H. Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sens. Actuators B, Vol. 142, No. 01, October 2009, pp. 105-110.
[36] J. Xu, X. Wang, J. Shen, Hydrothermal synthesis of In2O3 for detecting H2S in air, Sens. Actuators B, Vol. 115, No. 02, June 2006, pp. 642–646.
[37] G. H. Jain, V. B. Gaikwad and L. A. Patil, “Studies on gas sensing performance of (Ba0.8Sr0.2)(Sn0.8Ti0.2)O3 thick film resistors”, Sensors and Actuators B, Vol. 122, No. 02, March 2007, pp. 605-612.
[38] G. H. Jain, V. B. Gaikwad, D. D. Kajale, R. M. Chaudhari, R. L. Patil, N. K. Pawar and L. A. Patil, “Gas Sensing Performance of pure and modified Barium Strontium Titanate Thick Film Resistors”, Sensors and Transducers, Vol. 90, 2008, pp. 160-173
[39] P. Balaya, J. Jamnik, J. Fleig, J. Maier, “Mesoscopic electrical conduction in nanocrystalline SrTiO3”Appl. Phys. Lett. Vol. 88, No. 6, February 2006, article no. 062109 (3 pages).
[40] F.M. Pontes, E. Longo, E.R. Leite, E.J.H. Lee, J.A. Varela, P.S. Pizani, “Photoluminescence at room temperature in amorphous SrTiO3 thin films obtained by chemical solution deposition”, Mater. Chem. Phys. Vol. 77, No. 02, January 2002, pp. 598–602.
[41] C.D. Pinheiro, E. Longo, E.R. Leite, F.M. Pontes, R.Magnani, J.A. Varela, The role of defect states in the creation of photoluminescence in SrTiO3, Appl. Phys. A, Vol. 77, No. 1, 2003, pp. 81–85.
[42] W.F. Zhang, Z. Yin, M.S. Zhang, Study of photoluminescence and electronic states in nanophase strontium titanate, Appl. Phys. A, Vol. 70, No. 01, 2000, pp. 93–96.
[43] Y.S. Kim, S.C. Ha, K. Kim, H. Yang, J.T. Park, C.H. Lee, J. Choi, J. Paek, K. Lee, Room temperature semiconductor gas sensor based on non-stoichiometric tungsten oxide nanorod film, Appl. Phys. Lett. Vol. 86, No. 21, May 2005, article no. 213105(3pages).
[44] N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuators B, Vol. 5, 1991, pp.7–19.
[45] Z. Gergintschew, H. Förster, J. Kositza, D. Schipanski, Two-dimensional numerical simulation of semiconductor gas sensors, Sens. Actuators B, Vol. 26, 1995, pp.170–173.
[46] N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catal. Surv. Asia Vol. 7 2003, pp. 63–75.
[47] T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas sensor applications, Appl. Phys. A, Vol. 80, 2005, pp.1451–1454.
[48] N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surf. Sci., Vol. 86, 1979, pp. 335–344.
[49] M. Egashira, Y. Shimizu, Y. Takao, S. Sako, Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases , Sens. Actuators B, Vol.35, 1996, pp.62–67.
[50] J.Q. Xu, X.H. Jia, X.D. Lou, J.N. Shen, One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles , Solid State Electron. Vol. 50, No. 3, 2006, pp. 504–507.
[51] A. Rothschild and Y. Komen, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors” J. Appl. Phys. Vol. 95, No. 11, 2004, pp. 6374-6380.
[52] H. Windichamann and P. Mark, “A Model for the Operation of a Thin-Film SnOx Conductance-Modulation Carbon Monoxide Sensor”, J. Electrochem. Soc. Vol. 126, No. 4, 1979, pp.627-633.
[53] J Mizsei, How can sensitive and selective semiconductor gas sensors be made? Sensors and Actuators B, Vol. 23, No. 2- 3, February 1995, pp. 173-176
 

EXTRA FILES

COMMENTS