PREPARATION OF MoO3 THIN FILMS BY SPRAY PYROLYSIS AND ITS GAS SENSING PERFORMANCE

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

54
Reader(s)
186
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 5 , ISSUE 3 (September 2012) > List of articles

PREPARATION OF MoO3 THIN FILMS BY SPRAY PYROLYSIS AND ITS GAS SENSING PERFORMANCE

D. V. Ahire / S. D. Shinde / G. E. Patil / K. K. Thakur / V. B. Gaikwad / V. G. Wagh / G. H. Jain

Keywords : MoO3 thin film, spray pyrolysis, sensor.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 5, Issue 3, Pages 592-605, DOI: https://doi.org/10.21307/ijssis-2017-497

License : (CC BY-NC-ND 4.0)

Received Date : 03-July-2012 / Accepted: 01-August-2012 / Published Online: 01-September-2012

ARTICLE

ABSTRACT

MoO3 thin films have been prepared by a simple spray pyrolysis technique at substrate temperature 250oC. The structure and morphology of thin films are characterized by X-ray powder diffraction (XRD), scanning electron microscopy and UV-vis spectroscopy. The gas sensing properties of MoO3 thin film is studied at gas concentration 400 ppm and working temperature of 100–400 oC. It was found that the sensitivity depended on the working temperatures and also H2S gas concentration. The results show that the MoO3 thin film can be used to fabricate high performance H2S gas sensors.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] W. Gopel, K.D. Schierbaum, “SnO2 sensors: current status and future prospects”, Sensors and
Actuators B: Chemical, Vol. 26, 1995, pp. 1–12.
[2] H. Baltruschat, I. Kamphausen, R. Oelgeklaus, J. Rose, M. Wahlkamp, “Detection of volatile
organic solvents using potentiodynamic gas sensors”, Analytical Chemistry, Vol. 69, No. 4,
1997, pp. 743–748.
[3] D.E. Williams, “Semiconducting oxides as gas-sensitive resistors”, Sensors and Actuators B:
Chemical, Vol. 57, No.1, 1999, pp.1–16.
[4] K. Potje-Kamloth, “Semiconductor junction gas sensors”, Chemical Reviews, Vol. 108, No.
2, 2008, pp. 367–399.
[5] L. Liu, T. Zhang, L.Y.Wang, S.C. Li, “Improved ethanol sensing properties of Cu-doped
SnO2 nanofibers”, Materials Letter, Vol. 63, No. 23, 2009, pp. 2041–2043.
[6] Y. Wang, W.Z. Jia, T. Strout, A. Schempf, H. Zhang, B.K. Li, J.H. Cui, Y. Lei, “Ammonia
gas sensor using polypyrrole-coated TiO2/ZnO nanofibers”, Electroanalysis, Vol. 21, No. 12,
2009, pp. 1432–1438.
[7] A. K. Prasad, P.I. Gouma, “MoO3 and WO3 based thin film conductimetric sensors for
automotive applications”, J. Mater. Sci., Vol. 38, No. 21, 2003, pp. 4347–4352.
[8] S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri, T. Gnanasekaran,
“Electrical conductivity and gas sensing properties of MoO3”, Sens. Actuators B, Vol. 101,
No. 1, 2004, pp. 161–174.
[9] M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P. Nelli, G. Sberveglieri, “MoO3- based
sputtered thin films for fast NO2 detection”, Sens. Actuators B, Vol. 48, 1, 1998, pp. 285–
288.
[10] S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, “Gas sensing
properties of PLD made MoO3 films”, Sens. Actuators B, Vol. 94, 2, 2003, pp. 189–196.
[11] D.B. Dadyburjor, S.S. Jewur, E. Ruckenstein, “Selective oxidation of hydrocarbons on
composite oxides”, Catal. Rev. Sci. Eng., Vol. 19, No. 2, 1979, pp. 293–350.
[12]M.A. Larrubia, G. Ramis, G. Busca, “An FT-IR study of the adsorption of urea and ammonia
over V2O5-MoO3-TiO2 SCR catalysts”, Appl. Catal. B, Vol. 27, No. 3, 2000, pp. L145–
L151.
[13] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, “A new preparation method for
sputtered MoO3 multilayers for the application in gas sensors”, Sens. Actuators B: Chem.,
Vol. 78, 1, 2001, pp. 119–125.
[14]M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, M. Sacerdoti, G. Sberveglieri, “Characterization
of a molybdenum oxide sputtered thin film as a gas sensor”, Thin Solid Films, Vol. 307, No.
1, 1997, pp. 148–151.
[15] C. Imawan, F. Solzbacher, H. Steffes, E. Obermeier, “Gas-sensing characteristics of
modified-MoO3 thin films using Ti-overlayers for NH3 gas sensors”, Sens. Actuators B:
Chem., Vol. 64, No. 1, 2000, pp. 193–197.
[16] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, “Structural and gas-sensing properties of
V2O5–MoO3 thin films for H2 detection”, Sens. Actuators B: Chem., Vol. 77, No. 1, 2001 pp.
346–351.
[17] K. Galatsis, Y. Li, W. Wlodarski, C. Cantalini, M. Passacantando, S. Santucci, “MoO3,WO3
single and binary oxide prepared by sol–gel method for gas sensing applications”, J. Sol–Gel
Sci. Technol., Vol. 26, No. 1, 2003, pp. 1097–1101.
[18] J. Zhou, S.Z. Deng, N.S. Xu, J. Chen, J.C. She, “Synthesis and fieldemission properties of
aligned MoO3 nanowires”, Appl. Phys. Lett., Vol. 83, No. 13, 2003, pp. 2653–2655.
[19] A.K. Prasad, P.I. Gouma, D.J. Kubinski, J.H. Visser, R.E. Soltis, P.J. Schmitz, “Reactively
sputtered MoO3 films for ammonia sensing”, Thin Solid Films, Vol. 436, No. 1, 2003 pp. 46–
51.
[20] A.K. Prasad, D.J. Kubinski, P.I. Gouma, “Comparison of sol–gel and ion beam deposited
MoO3 thin film gas sensors for selective ammonia detection”, Sens. Actuators B: Chem., Vol.
93, No. 1, 2003, pp. 25–30.
[21] A. Bouzidi, N. Benramdane, H. Tabet-Derranz, C. Mathieu, B. Khelifa, R. Desfeux, “Effect
of substrate temperature on the structural and optical properties of MoO3 thin films prepared
by spray pyrolysis technique”, Mater. Sci. Eng. B, Vol. 97, No. 1, 2003, pp. 5–8.
[22] K.A. Gesheva, T. Ivanova, “A low-temperature atmospheric pressure CVD process for
growing thin films of MoO3 and MoO3–WO3 for electrochromic device applications”, Chem.
Vap. Deposit., Vol. 12, No. 4, 2006, pp. 231–238.
[23] R.S. Patil, M.D. Uplane, P.S. Patil, “Structural and optical properties of electrodeposited
molybdenum oxide thin films”, Appl. Surf. Sci., Vol. 252, No. 23, 2006, pp. 8050–8056.
[24] JCPDS data card no. 05- 0506.
[25] S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, “Aerosol assisted chemical vapour
deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate
precursors; thermophoresis and gas phase nanoparticle formation”, J. Mater. Chem., Vol. 16,
No. 35, 2006, pp. 3575– 3582.
[26] B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing Co., 1956.
[27] R. S. Patil, M.D. Uplane, P. S. Patil, “Electrosynthesis of Electrochromic Molybdenum Oxide
Thin Films with Rod-Like Features”, Int. J. Electrochem. Sci., Vol. 3, 2008, pp. 259 – 265.
[28] G. E. Patil D. D. Kajale, P. T. Ahire, D. N. Chavan, N. K. Pawar, S. D. Shinde, V. B.
Gaikwad, G. H. Jain, “Synthesis, characterization and gas sensing performance of SnO2 thin
films prepared by spray pyrolysis”, Bulletin of Material Science Vol. 34, No. 1, 2011, pp.1–9.
[29] G. E Patil, D. D. Kajale, V. B. Gaikwad and G. H. Jain, “Nanocrystalline Tin Oxide Thin
Film as a Low Level H2S Gas Sensor” International Journal of Nanoscience, Vol. 10, No. 4,
2011, pp. 1-5.
[30] G. H. Jain and L. A. Patil, “CuO-doped BSST thick film resistors for ppb level H2S gas
sensing at room temperature”, Sensors and Actuators B, Vol. 123, 2007, pp. 246-253.
[31] Franke, M.E., Koplin, T.J., Simon, U., “Metal and metal oxide nanoparticles
inchemiresistors: does the nanoscale matter?”, Small Vol. 2, 2006, p.36–50.
[32] Rothschild A., Komem, Y., “The effect of grain size on the sensitivity of nanocrystalline
metal-oxide gas sensors”, Journal of Applied Physics, Vol. 95, 2004, pp. 6374–6380.
[33] G. E. Patil, G. H. Jain, “Nanocrystalline CdSnO3 thin film as highly sensitive ethanol sensor”,
Proceedings of 5th International Conference on Sensing Technology, ICST 2011, (2011),
Article Number: 1569476109, pp. 260-263.

EXTRA FILES

COMMENTS