SYNTHESIS OF NANOSTRUCTURED ZrO2 FOR GAS SENSING APPLICATION

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

19
Reader(s)
31
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 5 , ISSUE 3 (September 2012) > List of articles

SYNTHESIS OF NANOSTRUCTURED ZrO2 FOR GAS SENSING APPLICATION

Pratap G. Patil / D. D. Kajale / V. P. Patil / G. E. Patil / G. H. Jain *

Keywords : zirconia nanopowder, conventional precipitation method, characterization, H2S sensor.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 5, Issue 3, Pages 673-684, DOI: https://doi.org/10.21307/ijssis-2017-501

License : (CC BY-NC-ND 4.0)

Received Date : 25-June-2012 / Accepted: 05-August-2012 / Published Online: 01-September-2012

ARTICLE

ABSTRACT

Nanocrystalline ZrO2 (Zirconia) has been synthesized by a conventional precipitation method. The structural, morphological, microstructural, optical and gas-sensing properties of ZrO2 were investigated by using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and static gas sensing unit, respectively. X-ray diffraction pattern and TEM of the synthesized product reveal their nano-crystalline nature with grain size 18 nm and 20 nm, respectively. Gas sensing properties of their thick films, which were fabricated by screen-printing to various gases (O2, NO2, C2H5OH, CO, CO2, NH3, LPG, H2S and H2) were tested in ambient air. The ZrO2 thick films showed a high response and selectivity to H2S gas. The effect of operating temperature, gas concentration on the sensing characteristics of these films towards H2S was discussed..

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] D. F. Shriver, P. W. Atkins, Inorganic Chemistry, third edition, Oxford University Press, 2004, pp. 184-190.
[2] G. S. Sodhi, Fundamental Concepts of Environmental Chemistry, 1st ed., Narosa Publishing House, New Delhi, 2002, pp. 217-223.
[3] G. Brawer, Handbook of Preparative Inorganic Chemistry, Vol. II, 2nd ed., Academic press, New York, 1965, pp. 1017-1347.
[4] P. Pellinen, K., V. Vilkka, J. J. K. Jaakkola, O. Marttila. P. Jappinen and T. Haahtela, “The South Karelia Air Pollution Study: Effects of Low- Level Exposure to Malodorous Sulfur Compounds on Symptoms”, Archives of Environmental Health, Vol. 51, No. 4, 1996, pp. 315-329.
[5] G. Sberveglieri, S. Groppelli, P. Nelli, C. Perego, G. Valdre, A. Camanzi, “Detection of sub-ppm H2S Concentration by SnO2 (Pt) thin films grown by the RGTO technique”, Sensors and Actuators B, Vol.55, 1998, pp. 86-89.
[6] D. J. Smith, J. F. Velelina, R. S. Falconer, E. L. Wittman, “Stability sensitivity and selectivity of tungsten trioxide films for sensing applications”, Sensors and Actuators B, Vol. 13, 1993, pp. 264-268.
[7] H. M. Lin, C.M. Hsu, H. Y. Yang, “Nanocrystalline WO3 based H2S Sensors”, Sensors and Actuators B, Vol. 22, 1994, pp. 63-68.
[8] W. H. Tao, C. H. Tasi, “H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining”, Sensors and Actuators B, Vol. 81, 2002, pp. 237-247.
[9] J. Q. Xu, X. H. Wang, J. N. Shen, “Hydrothermal synthesis of In2O3 for detecting H2S”, Sensors and Actuators B, Vol. 115, 2006, pp. 642-646.
[10] C. H. Wang, X. F. Chu, M. M. Wu, “Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods”, Sensors and Actuators B, Vol. 113, 2006, pp. 320- 323.
[11] K. I. Gnanasekar, V. Jayaraman, E. Prabhu, T. Gnanasekaran, G. Periaswami, “Electrical and sensor properties of FeNbO4 : a new sensor material”, Sensors and Actuators B, Vol. 55, 1998, pp. 170-174.
[12] Y. L. Liu, H. Wang, Y. Yang, Z. M. Liu, H. F. Yang, G. L. Shen, R. Q. Yu, “Hydrogen sulfide sensing properties of NiFeO4 nanopowder doped with noble metal”, Sensors and Actuators B, Vol. 102, 2004, pp. 155-161.
[13] Yongge Bai, Dehua He, Shaohui Ge, Huimin Liu, Jinyao Liu, Wei Huang, “Influences of preparation methods of ZrO2 support and treatment conditions of Cu/ZrO2 catalysts on synthesis of methanol via CO hydrogenation”, Catalysis Today, Vol. 149, 2010, pp. 111–116.
[14] S. D. Shinde, G. E. Patil, D. D. Kajale, V. B. Gaikwad and G. H. Jain, “Synthesis of ZnO nanorods for gas sensor applications”, International Journal on Smart Sensing and Intelligent System, Vol. 5, No. 1, March 2012, pp. 57-70.
[15] JCPDS - International Centre for Diffraction Data, Card No. 37 – 1484.
[16] B. K. Kotlyarchuk, D. I. Popovych, V.K. Savchuk, A.S. Serednycki, “Pulsed Laser Deposition of ZrO2 Thin Films for Application in Microelectronic Devices”, Physics and Chemistry of solid state, Vol. 4, No.3, 2003, pp. 434-439.
[17] Ganesh E. Patil D. D. Kajale, P. T. Ahire, D. N. Chavan, N. K. Pawar, S. D. Shinde, V. B. Gaikwad, G. H. Jain, “Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis”, Bulletin of Material Science Vol. 34, No. 1, 2011, pp. 1–9.
[18] S. D. Shinde, G. E. Patil, D. D. Kajale, V. B. Gaikwad and G. H. Jain, “Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor”, Journal of Alloys and Compounds, Vol. 528, 2012, pp. 109-114.
[19] Ganesh E. Patil, D. D. Kajale, V. B. Gaikwad, N. K. Pawar and G. H. Jain, “Properties and Gas Sensing Mechanism Study of CTO Thin Films as Ethanol Sensor”, Sensors & Transducers Journal, Vol. 137, Issue 2, February 2012, pp. 47-58.
[20] Ganesh E. Patil and G. H. Jain, “Nanocrystalline CdSnO3 thin film as highly sensitive ethanol sensor”, Proceedings of 5th International Conference on Sensing Technology ICST-2011, 978-1-4577-0168-9, pp. 249–252, DOI. 10.1109 / ICSensT. 2011. 6136975, 2012.

EXTRA FILES

COMMENTS