ROBOT-ASSISTED THERAPY: DESIGN, CONTROL AND OPTIMIZATION

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

9
Reader(s)
29
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 5 , ISSUE 4 (December 2012) > List of articles

ROBOT-ASSISTED THERAPY: DESIGN, CONTROL AND OPTIMIZATION

Haifa Mehdi * / Olfa Boubaker *

Keywords : Robot-assisted therapy, Impedance control, Safe control, Nonlinear optimization, Human Machine Interface.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 5, Issue 4, Pages 1,044-1,062, DOI: https://doi.org/10.21307/ijssis-2017-522

License : (CC BY-NC-ND 4.0)

Received Date : 16-August-2012 / Accepted: 15-October-2012 / Published Online: 01-December-2012

ARTICLE

ABSTRACT

To improve the human arm function of disable patients after stroke, we propose in this paper a new design of a robot-assisted therapy. The robotic device must be attached to a human arm and mimics the motion of the shoulder, elbow and wrist joints. The functional training of the stroked upper limb is covered in motion and force via a safe compliant motion. The controller parameters are optimized by the therapist based on the human morphology parameters via an intelligent Control Interface where a Therapist-Patient Interface including the training mode configuration and the displaying the training data must motivate the patients during the assessment treatment progress.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] M. Hillman, “Rehabilitation robotics from past to present - a historical perspective,” In Proc.
8th International Conference on rehabilitation Robotics (ICORR 2003), South Korea, 2003.
[2] K. Kiguchi, S. Kariya, K. Watanabe, K. Izumi, T. Fukuda, “An exoskeletal robot for human
elbow motion support—sensor fusion, adaptation, and control,” IEEE Transactions on
Systems Man and Cybernetics, Part B, vol. 31, n°3, 2001, pp. 353-361.
[3] J.B. Stephen, E.B. Ian, H.S. Stephen, “Performance evaluation of a planar 3DOF robotic
exoskeleton for motor assessment,” Journal of Medical Devices, vol. 3, 2009, pp.1-12.
[4] D.J. Reinkensmeyer, D. Aoyagi, J. L. Emken, J. A. Galvez, W. Ichinose,G. Kerdanyan, S.
Maneekobkunwong, K. Minakata, J. A. Nessler, R. Weber, R. R. Roy, R. de Leon, J. E.
Bobrow, S. J. Harkema, V. R. Edgerton, “Tools for understanding and optimizing robotic gait
training,” Journal of Rehabilitation Research and Development, vol. 43, 2007, pp.657-670.
[5] J.F. Veneman, R. Kruidhof, E.E.G. Hekman, R. Ekkelenkamp, E.H.FV. Asseldonk, H. V. D.
Kooij, “Design and evaluation of the LOPES exoskeleton robot for interactive gait
rehabilitation,” IEEE Transactions on Neural and Rehabilitation Systems Engineering, vol.
15, n°3, 2007, pp. 379-386.
[6] J.J. Daly, N. Hogan, E.M. Perepezko, et al., “Response to upper-limb robotics and functional
neuromuscular stimulation following stroke,” Journal of Rehabilitation Research &
Development, vol. 42, n°6, 2005, pp. 723-736.
[7] G. Romer, H. Stuyt, A. Peters, “Cost-savings and economic benefits due to the assistive
robotic manipulator (ARM),” In Proc. of the 9th international conference on rehabilitation
robotics (ICORR 2005), Illinois (Chicago), 2005, pp. 201-204.
[8] H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. T. Volpe, N.
Hogan, “Rehabilitation robotics: Performance-based progressive robot-assisted therapy,”
Autonomous Robots, vol. 15, n°1, 2003, pp. 7-20.
[9] P.S. Lum, C. G. Burgar, H.F.M. Van der Loos, P.C. Shor, M. Majmundar, R. Yap, “MIME
robotic device for upper-limb neuro-rehabilitation in sub acute stroke subjects: A follow-up
study,” Journal of Rehabilitation Research & Development, vol.43, n° 5, 2006, pp. 631-642.
[10] T. G. Sugar, J.He, E.J. Koeneman, J.B. Koeneman, R.Herman, H. Huang, R.S. Schultz,
D.E. Herring, J.Wanberg, S. Balasubramanian, P. Swenson, J.A. Ward, “Design and control
of RUPERT: A device for robotic upper extremity repetitive therapy,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering,vol.15, n°3, 2007, pp. 336-346.
[11] M. Yamano, Y. Suzukawa, J. Berengueres, R. Tadakuma, “Flexible control system of a
robot hand using micro control units and RT-middleware,” International Journal of Social
Robotics, DOI 10.1007/s12369-011-0130-y.
[12] H. Mehdi, O. Boubaker, “Stiffness and impedance control using Lyapunov theory for
robot-aided rehabilitation,” International Journal of Social Robotics, DOI: 10.1007/s12369-
011-0128-5.
[13] G. Herrmann & C. Melhuish, “Towards safety in human robot interaction,” International
Journal of Social Robotics, vol. 2, n°3, 2010, pp. 217-219.
[14] M. Vermeulen, M. Wisse, “Intrinsically safe robot arm: Adjustable static balancing
and low power actuation,” International Journal of Social Robotics, vol. 2, n°3, 2010, pp.
275-288.
[15] M. Van Damme, P. Beyl, B. Vanderborght, R. Versluys, R. Van Ham, I. Vanderniepen, F.
Daerden, D. Lefeber, “The safety of a robot actuated by pneumatic muscles—A case study,”
International Journal of Social Robotics, vol. 2, n°3, 2010, pp. 289-303.
[16] S. M. M. Rahman and R. Ikeura, “Optimizing perceived heaviness and motion for lifting
objects with a power assist robot system considering change in time constant,” International
Journal on Smart Sensing and Intelligent Systems, vol.5, n°2, 2012, pp. 458-486.
[17] N. Hogan, “Impedance control: An approach to manipulators: Part 1, 2, 3”, ASME
Journal of Dynamic Systems, Measurement and Control, vol. 107, n° 1, 1985, pp. 1-24.
[18] H. Mehdi, O. Boubaker, “Rehabilitation of a human arm supported by a robotic
manipulator: A position/force cooperative control,” Journal of Computer Science, vol.6, n° 8,
2010, pp. 912-919.
[19] H. Mehdi, O. Boubaker, “Impedance controller tuned by particle swarm optimization for
robotic arms,” International Journal of Advanced Robotic Systems, vol.8, n°5, 2011, pp.93-
103.
[20] H. Mehdi, O. Boubaker, “Position/force control optimized by particle swarm intelligence
for constrained robotic manipulators,” In Proc. Of the 11th IEEE International Conference on
Intelligent Systems Design and Applications (ISDA’2011), Córdoba, Spain, 2011, pp. 190-
195.
[21] A. Aloulou, O. Boubaker, “Control of a step walking combined to arms swinging for a
three dimensional humanoid prototype,” Journal of Computer Science, vol. 6, n° 8, 2010, pp.
886-895.
[22] P.E. Gill, W. Murray, M.H. Wright, “Practical optimization,” Academic Press, 1981.
[23] M. P. Singh, P. K. Tripathi, K.V Gangadharan, “FPGA based vibration control of a mass
varying two-degree of freedom system,” International Journal on Smart Sensing and
Intelligent Systems, vol.4, n°4, 2011, pp. 698-709.
[24] W. Benrejeb, O. Boubaker, “FPGA modeling and real-time embedded control design via
LabVIEW Software: Application for swinging-Up a pendulum,” International Journal on
Smart Sensing and Intelligent Systems, vol. 5, n°3, 2012, pp. 576-591.
[25] K. Dhanalakshmi, Aditya Avinash, M. Umapathy, M. Marimuthu, “Experimental study
on vibration control of shape memory alloy actuated flexible beam,” International Journal on
Smart Sensing and Intelligent Systems, vol. 3, n°2, 2010, pp. 156-175.
[26] O. Boubaker, “National Instruments LabVIEW: Ultimate Software for Engineering
Education,” in Proc. International Conference on Frontiers in Education: Computer Science
and Computer Engineering, Las Vegas, 2011.
http://cerc.wvu.edu/download/WORLDCOMP%2711/2011%20CD%20papers/FEC4450.pdf
[27] The National Instruments® LabVIEW™ Corporation website (2010). [Online].
Available: http://www.ni.com/labview/
[28] H. Mehdi, O. Boubaker, “Robust tracking control for constrained robots,” Procedia
Engineering, vol. 41, 2012, pp. 1292-1297.
[29] H. Mehdi, O. Boubaker, “New robust tracking control for safe constrained robots under
unknown impedance environment,” Lecture Notes in Computer Science, vol. 7429, 2012, pp.
313-323.
[30] A. Aloulou, O. Boubaker, “Minimum jerk-based control for a three dimensional bipedal
robot,” Lecture Notes in Computer Science, vol. 7102, 2011, pp. 251-262.
[31] F. Kunwar, B. Benhabib, “Advanced predictive guidance navigation for Mobile Robots:
A novel strategy for rendezvous in dynamic settings,” International Journal on Smart
Sensing and Intelligent Systems, vol. 1, n°4, 2008, pp. 858-890.

EXTRA FILES

COMMENTS