PARETO OPTIMAL ROBUST FEEDBACK LINEARIZATION CONTROL OF A NONLINEAR SYSTEM WITH PARAMETRIC UNCERTAINTIES

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

6
Reader(s)
8
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 1 (March 2014) > List of articles

PARETO OPTIMAL ROBUST FEEDBACK LINEARIZATION CONTROL OF A NONLINEAR SYSTEM WITH PARAMETRIC UNCERTAINTIES

A. Hajiloo * / M. samadi * / N. Nariman-Zadeh *

Keywords : Pareto, Feedback Linearization, Parametric Uncertainty, Robust Design.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 1, Pages 214-237, DOI: https://doi.org/10.21307/ijssis-2017-653

License : (CC BY-NC-ND 4.0)

Received Date : 17-February-2014 / Accepted: 05-December-2014 / Published Online: 27-December-2017

ARTICLE

ABSTRACT

The problem of multi-objective robust feedback linearization controller design of nonlinear system with parametric uncertainties is solved in this paper. The main objective of this paper is to propose an optimal technique to design a robust feedback linearization controller with multi-objective genetic algorithm. A nonlinear system is considered as a benchmark and feedback linearization controller is designed for deterministic and probabilistic model of the benchmark. Three and four conflicting objective functions are used in Pareto design of feedback linearization controller for deterministic and probabilistic design, respectively. The simulation results reveal the effectiveness of the proposed method.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] J.J.E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall International Inc., USA, 1991.
[2] S. H. Zak, Systems and Control, Oxford University Press, New York, 2003.
[3] J. L. Chen, W. Chang, Feedback linearization control of a two-link robot using a multi-crossover genetic algorithm, Expert Systems with Applications 36, pp. 4154–4159, 2009.
[4] M. Keshmiri, A. F. Jahromi, A. Mohebbi, M. Hadi Amoozgar, & W. F. Xie, MODELING AND CONTROL OF BALL AND BEAM SYSTEM USING MODEL BASED AND NON-MODEL BASED CONTROL APPROACHES, International Journal on Smart Sensing & Intelligent Systems, Vol. 5, N0. 1, 2012.
[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1998.
[6] L. R. Ray, & R. F. Stengel, A Monte Carlo approach to the analysis of control system robustness, Automatica, 29, pp. 229–236, 1993.
[7] Q. Wang and R.F. Stengel, Robust control of nonlinear systems with parametric uncertainty, Automatica, Vol. 38, pp. 1591–1599, 2002.
[8] J. Zhang, & J. Cai, Error Analysis and Compensation Method Of 6-axis Industrial Robot, International Journal on Smart Sensing & Intelligent Systems, Vol. 6, No. 4, 2013.
[9] Q. Wang, & R. F. Stengel, Robust nonlinear control of a hypersonic aircraft, Journal of Guidance, Control, and Dynamics, 23(4), pp. 577–585, 2000.
[10] A.Savkin, I.R. Peterson, V.A. Ugronovskii, Robust Control Design Using H_infinity methods, Springer-Verlag, London, 2000.
[11] L.G. Crespo, “Optimal performance, robustness and reliability base designs of systems with structured uncertainty”, American Control Conference, Denver, Colorado, USA, pp. 4219-4224, 2003.
[12] L.G. Crespo, S.P. Kenny, Robust Control Design for systems with probabilistic Uncertainty, NASA report, TP-2005-213531, March 2005.
[13] Q. Wang and R.F. Stengel, “Searching for Robust Minimal-order Compensators”, Journal of Dynamic Systems, Measurement, and Control, Vol. 123, pp. 223-236, 2001.
[14] A. Hajiloo, N. Nariman-zadeh and A. Moeini, “Pareto Optimum Design of Robust Controllers for Systems with Parametric Uncertainties”, Robotics, Automation and Control, ISBN 978-953-7619-18-3, I-Tech, Vienna, Austria, 2008.
[15] A. Hajiloo, N. Nariman-zadeh, & A. Moeini, “Pareto optimal robust design of fractional-order pid controllers for systems with probabilistic uncertainties,” Mechatronics, Vol. 22, No. 6, pp. 788 – 801, 2012.
[16] A. Hajiloo, N. Nariman-zadeh, A. Jamali, A. Bagheri, A. Alasti, Pareto Optimum Design of Robust PI Controllers for Systems with Parametric Uncertainty, International Review of Mechanical Engineering(I.R.M.E.), Vol. 1 No. 6 (2007), 628-640.
[17] W. A. Butt, OBSERVER BASED DYNAMIC SURFACE CONTROL OF A HYPERSONIC FLIGHT VEHICLE, International Journal on Smart Sensing & Intelligent Systems, Vol. 6, N0. 2, 2013.
[18] M. Papadrakakis, N.D. Lagaros, and V. Plevris, “Structural optimization considering the probabilistic system response”, Theoretical Applied Mechanics, Vol. 31, No. 3-4, Belgrade, pp. 361-393, 2004.
[19] B.A. Smith, S.P. Kenny and L.G. Crespo, “Probabilistic Parameter Uncertainty Analysis of Single input Single Output Control Systems”, NASA report, TM-2005-213280, March 2005.
[20] E.D. Sontag, “further facts about input to state stabilization”, IEEE Transactions on Automatic and Control, Vol. 34, pp. 435–443, 1990.
[21] G. Agrawal, C.L. Bloebaum, K. Lewis, Intuitive design selection using visualized n-dimensional Pareto frontier, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, 2005.
[22] X. Blasco, J.M. Herrero, J. Sanchis, M. Martinez, A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization, Information Sciences, Vol. 178 (2008), 3908-3928.

EXTRA FILES

COMMENTS