MOVING TARGET DETECTION BASED ON GLOBAL MOTION ESTIMATION IN DYNAMIC ENVIRONMENT

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 1 (March 2014) > List of articles

MOVING TARGET DETECTION BASED ON GLOBAL MOTION ESTIMATION IN DYNAMIC ENVIRONMENT

GAO Jun-chai * / LIU Ming-yong * / XU Fei *

Keywords : Moving target, global motion parameters, gradient direction, SURF operator, robust estimation

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 1, Pages 360-379, DOI: https://doi.org/10.21307/ijssis-2017-660

License : (CC BY-NC-ND 4.0)

Received Date : 30-October-2013 / Accepted: 06-February-2014 / Published Online: 27-December-2017

ARTICLE

ABSTRACT

AUV localization is not accurate based on sequence images if moving target is as landmark,so the moving target detection algorithm is studied based on global motion estimation, which detects and eliminates moving target according to the motion inconsistency of the moving target. Generally grid block matching is used in the global motion estimation, it can’t effectively dispose the dynamic background, and the gradient direction invariant moments descriptors method of free circular neighborhood based on feature points is proposed, which is effective for the background rotating and light changing in two adjacent images. For the matching points, the parameters of global motion are estimated robustly combined with normalized linear estimation method and least median squares. Experiments show that the designed algorithm can effectively estimate parameters of global motion, and eliminate the motion target as mismatch.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] M. Betke, E. Haritaoglu and L. S. Davis, “Real-time multiple vehicle detection and tracking from a moving vehicle”, Machine Vision and Applications, December 2000, pp. 69-83.
[2] H. Tao, H. S. Sawhney and R. Kumar, “Object tracking with Bayesian estimation of dynamic layer representation”, IEEE Trans. PAMI,Vol. 24,No. 1,2002, pp. 75-89.
[3] R. Pless, T. Brodsky and Y. Aloimonos, “Detecting independent motion: The statistics of
temporal continuity”, IEEE Trans. PAMI, Vol. 22, No. 8, 2000, pp. 768-773.
[4] W. Bell, P. Felzenszwalb and D. Huttenlocher, “Detection and Long Term Tracking of Moving Object in Aerial Video”, http://www.cs.cornell.edu/vision/wbell/ identtracker, March 1999.
[5]J. Konrad, “Motion detection and estimation”, Handbook of Image and Video Processing (A.Bovik, ed.), ch. 3.10, Academic Press, 2000, pp. 207-225.
[6] Yosi Keller and Amir Averbuch, “Fast motion estimation using bidirectional gradient methods”, IEEE Transactions on Image Processing, Vol. 13, No. 8, August, 2004,pp.1042-1054.
[7] G. Sorwar, M. Murshed and L. Dooley, “A Fully Adaptive Distance-dependent Thresholding Search (FADTS) Algorithm for Performance-management Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 4,2007, pp.429-440.
[8]R. T. Collins, A. J. Lipton and T. Kanada, et.al, “A System for Video Surveillance and Monitoring”,VSAM Final Report, Technical report, CMU-RI-TR-00-12, Robotics Institute,Carnegie Mellon University, 2000.
[9]Ali Saad and Shah Mubarak,“COCOA-Tracking in Aerial Imagery”, SPIE, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications, 2006, pp.110-118,Orlando.
[10] K. Haris, S. N. Efstratiadis, N. Maglaveras and C. Pappas, “Image noise reduction based on local classification and iterated conditional modes”,Proc. IWISP, Manchester, U.K, November 1996.
[11] R. Guo and S. M. Pandit, “Automatic Threshold Selection based on Histogram Modes and a Discriminant Criterion”, Machine Vision and Application, No. 10, 1998, pp. 331-338.
[12] N. Otsu, “A Threshold Selection Method from Gray-level Histograms”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 9,No. 1,1979, pp. 62-66.
[13] E. R. Dougherty and C. R. Giardina, “Mathematical Methods for Artificial Intelligence and Autonomous Systems”, Prentice-Hall, 1988, pp.319.
[14] C. Anderson, P. Burt and W. G. van der, “Change detection and tracking using Pyramid transformation techniques”, Proceedings of SPIE-Intelligent Robots and Computer Vision, Vol.579,1985, pp.72-78.
[15] A. J. Lipton, H. Fujiyoshi and R. S. Patil, “Moving Target Classification and Tracking from Real-Time Video”, Proc. Fourth IEEE Workshop on Application and Computer Vision, 1998,pp.8-14.
[16] Y. H. Yang and M. D. Levine, “The background Primal sketch: An approach for tracking moving objects”, Machine Vision and Application, No. 5, 1992, pp.17-34.
[17] J. B. Kim and H. J. Kim, “Efficient region-based motion segmentation for video monitoring system”, Pattern Recognition Letters, Vol. 24, No.1, 2003, pp.113-128.
[18]J. Barron, D. Fleet and S. Beauchemin, “Performance of optical flow techniques”,International Journal of Computer Vision, Vol. 12, No.1, 1994, pp. 42-77.
[19]S. Brandt, “Maximum likelihood robust regression with known and unknown residual models”, Proc. of the ECCV2002, pp.97-102.
[20] A. Smolic and I. R.Ohm, “Robust global motion estimation using a simplified M-estimator approach”, Proceedings of the IEEE International Conference on Image Processing, 2000,pp.868-871.
[21]P. Torr and D. Murray, “The development and comparison of robust methods for estimating the fundamental matrix”, Int. Journal of Computer Vision, Vol. 24, No.3, 1997, pp. 271-300.
[22] Z. Y. Zhang, “Determining the epipolar geometry and its uncertainty: A review”, Int.Journal of Computer Vision, Vol. 27, No.2, 1998, pp. 161-195.
[23] Kim Yeon-Ho and A. C. Kak, “Error Analysis of Robust Optical Flow Estimation by Least Median of Squares Methods for the Varing Illumination Model”, IEEE Trans. PAMI, Vol. 28,No.9, 2006, pp. 1408-1435.
[24] R. Subbarao and P. Mee, “Beyond RANSAC: User Independent Robust Regression”,Computer Vision and Pattern Recognition Workshop, 2006, pp.101-105.

EXTRA FILES

COMMENTS