ORIENTATION OF A TRIAXIAL ACCELEROMETER USING A HOMOGENEOUS TRANSFORMATION MATRIX AND KALMAN FILTERS

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 4 (December 2014) > List of articles

ORIENTATION OF A TRIAXIAL ACCELEROMETER USING A HOMOGENEOUS TRANSFORMATION MATRIX AND KALMAN FILTERS

J.-S. Botero V * / W. Hernández * / E. Fernández *

Keywords : Accelerometer, alignment, tilt, translation, triaxial, rotation

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 4, Pages 1,631-1,646, DOI: https://doi.org/10.21307/ijssis-2017-724

License : (CC BY-NC-ND 4.0)

Received Date : 20-August-2014 / Accepted: 06-November-2014 / Published Online: 01-December-2014

ARTICLE

ABSTRACT

The evolution in the development of manufacturing techniques of electronic components, including accelerometers, has allowed access to a new field of research and applications in consumer electronics. The aim of this work is to present a method for aligning triaxial accelerometers, finding the parameters of the rotation, the translation and the scale of the homogeneous transformation matrix. In principle, it is necessary to acquire six points to build the frame of reference of the accelerometer and ensure the consistency of the measurements, in order to check the angle between the axis and the magnitude. Subsequently, using spatial geometry, the intersection of the system of reference is estimated, to determine the extent of translation in the homogeneous transformation matrix. In a further step, the rotation values of the matrix are generated by taking the orientation of the z-axis into account and, finally, the resulting factor is scaled to normalize the magnitude value of gravity. Using the transformation matrix, it is possible to align the original reference system of the accelerometer to another coordinate system. The satisfactory results of this experiment show the need of implementing the here described method to enable the use of variable tilt measurements.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] K.-S. Kim, T.-H. Yoon, J.-W. Lee, D.-J. Kim, Interactive toothbrushing education by a smart toothbrush system via 3D visualization., Comput. Methods Programs Biomed. 96 (2009) 125–132. doi:10.1016/j.cmpb.2009.04.006.
[2] K. Morioka, F. Hashikawa, T. Takigawa, Human Identification Based on Walking Detection with Acceleration Sensor and Networked Laser Range Sensors in Intelligent Space, Int. J. Smart Sens. Intell. Syst. 6 (2013) 2040–2054.
[3] M.J. Mathie, B.G. Celler, N.H. Lovell, A.C.F. Coster, Classification of basic daily movements using a triaxial accelerometer, Med. Biol. Eng. Comput. (2004) 679–687.
[4] B. Kikhia, M. Gomez, L.L. Jiménez, J. Hallberg, N. Karvonen, K. Synnes, Analyzing body movements within the Laban Effort Framework using a single accelerometer., Sensors. 14 (2014) 5725–41. doi:10.3390/s140305725.
[5] C.C. Yang, Y.L. Hsu, A review of accelerometry-based wearable motion detectors for physical activity monitoring., Sensors. 10 (2010) 7772–88. doi:10.3390/s100807772.
[6] T. Paul, J. Singh, M.M. Nayak, K. Rajanna, M.S. Kumar, Design and optimization of bulk micromachinaded accelerometer for space applications, Int. J. Smart Sens. Intell. Syst. 1 (2008) 1019–1030.
[7] M.D. Djurić-Jovičić, N.S. Jovičić, D.B. Popović, Kinematics of gait: new method for angle estimation based on accelerometers., Sensors. 11 (2011) 10571–85. doi:10.3390/s111110571.
[8] W. Hernández, Improving the Responses of Several Accelerometers Used in a Car Under Performance Tests by Using Kalman Filtering, Sensors. 1 (2001) 38–52.
[9] W. Hernández, Improving the Response of a Rollover Sensor Placed in a Car under Performance Tests by Using a RLS Lattice Algorithm, Sensors. 5 (2005) 613–632. doi:10.3390/s5120613.
[10] L. Gasbarro, A. Beghi, R. Frezza, F. Nori, C. Spagnol, Motorcycle trajectory reconstruction by integration of vision and MEMS accelerometers, in: 43rd IEEE Conf. Decis. Control, IEEE, Atlantis, Paradise Island, 2004: pp. 779–783. doi:10.1109/CDC.2004.1428759.
[11] D. Giansanti, G. Maccioni, V. Macellari, The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers., IEEE Trans. Biomed. Eng. 52 (2005) 1271–7. doi:10.1109/TBME.2005.847404.
[12] H.H.S. Liu, G.K.H. Pang, Accelerometer for mobile robot positioning, IEEE Trans. Ind. Appl. 37 (2001) 812–819. doi:10.1109/28.924763.
[13] J. Hwang, H. Yun, S.-K. Park, D. Lee, S. Hong, Optimal methods of RTK-GPS/accelerometer integration to monitor the displacement of structures., Sensors. 12 (2012) 1014–34. doi:10.3390/s120101014.
[14] R. Raya, E. Rocon, J. a Gallego, R. Ceres, J.L. Pons, A robust kalman algorithm to facilitate human-computer interaction for people with cerebral palsy, using a new interface based on inertial sensors., Sensors. 12 (2012) 3049–3066. doi:10.3390/s120303049.
[15] W.T. Ang, S.Y. Khoo, P.K. Khosla, C.N. Riviere, Physical model of a MEMS accelerometer for low-g motion tracking applications, in: IEEE Int. Conf. Robot. Autom. 2004. Proceedings. ICRA ’04. 2004, IEEE, New Orleans. LA, 2004: pp. 1345–1351. doi:10.1109/ROBOT.2004.1308011.
[16] M. Meng, Z. Wu, Y. Yu, Y. Ge, Y. Ge, Design and Characterization of a Six-axis Accelerometer*, in: Proc. 2005 IEEE Int. Conf. Robot. Autom., IEEE, Barcelona, Spain, 2005: pp. 2356–2361.
[17] J. Yang, W. Chang, W.C. Bang, E.S. Choi, Analysis and compensation of errors in the input device based on inertial sensors, Proc. Int. Conf. Inf. Technol. Coding Comput. 2 (2004) 790–796. doi:10.1109/ITCC.2004.1286755.
[18] M. ŠIPOŠ, J. ROHÁÄOE, P. NOVÁÄOEEK, Analyses of Electronic Inclinometer Data for Tri-axial Accelerometer’s Initial Alignment, Pe.org.pl. (2012) 286–290.
[19] M. Sotak, Testing the Coarse Alignment Algorithm Using Rotation Platform, Acta Polytech. Hungarica. 7 (2010).
[20] R.E. Kalman, R.S. Bucy, New Results in Linear Filtering and Prediction Theory, Trans. ASME–Journal Basic Eng. 83 (1961) 95–108. doi:10.1115/1.3658902.
[21] R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME–Journal Basic Eng. 82 (1960) 35–45.
[22] G. Pappas, M. Zohdy, Extended Kalman Filtering and Pathloss modeling for Shadow Power Parameter Estimation in Mobile Wireless Communications, Int. J. Smart Sens. Intell. Syst. 7 (2014) 898–924.

EXTRA FILES

COMMENTS