A COMPARATIVE STUDY IN THE SENSITIVITY OF OPTICAL FIBER REFRACTOMETERS BASED ON THE INCORPORATION OF GOLD NANOPARTICLES INTO LAYERBY-  LAYER FILMS

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

17
Reader(s)
39
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 8 , ISSUE 2 (June 2015) > List of articles

A COMPARATIVE STUDY IN THE SENSITIVITY OF OPTICAL FIBER REFRACTOMETERS BASED ON THE INCORPORATION OF GOLD NANOPARTICLES INTO LAYERBY-  LAYER FILMS

Pedro J. Rivero * / Miguel Hernaez / Javier Goicoechea / Ignacio R. Matías / Francisco J. Arregui

Keywords : Optical fiber sensors, gold nanoparticles, optical phenomena.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 8, Issue 2, Pages 822-841, DOI: https://doi.org/10.21307/ijssis-2017-785

License : (CC BY-NC-ND 4.0)

Received Date : 20-March-2015 / Accepted: 15-April-2015 / Published Online: 01-June-2015

ARTICLE

ABSTRACT

In this work, optical fiber refractometers based on the successive incorporation of gold nanoparticles have been fabricated by means of the Layer-by-Layer Embedding (LbL-E) deposition technique. This enables the apparition of two different optical phenomena, Localized Surface Plasmon Resonance (LSPR) and Lossy Mode Resonance (LMR). The absorption peaks related to both phenomena were captured during the fabrication process, showing a different evolution as a function of the resultant thickness coating. Initially, LSPR band is observed for thinner coatings, whereas multi-LMR bands are observed as the thickness coating is increased. In addition, the response of both phenomena to variations of the surrounding medium refractive index (SMRI) was monitored, studying their different sensitivities. LSPR band only shows intensity variation with negligible wavelength displacement whereas LMR bands present a strong wavelength response. The combination of both resonances opens the door in the design of self-referenced optical devices for sensing applications.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] P. R. Cooper, "Refractive-index measurements of liquids used in conjunction with optical fibers." Appl. Opt., vol. 22, pp. 3070-3072, 1983.
[2] M. Daimon and A. Masumura, "Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region," Appl. Opt., vol. 46, pp. 3811-3820, 2007.
[3] M. Mitsushio, S. Higashi and M. Higo, "Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols," Sens. Actuators A Phys, vol. 111, pp. 252-259, 2004.
[4] B. Culshaw and A. Kersey, "Fiber-optic sensing: a historical perspective", J. Lightwave Technol., vol. 26, pp. 1064-1068, 2008.
[5] Q. Wu, Y. Semenova, P. Wang and G. Farrell, “High sensitivity SMS fiber structure based refractometer – analysis and experiment,” Opt. Exp., vol. 19, pp. 7937-7944, 2011.
[6] D. Jia, Z. Yao and C. Li, “The Transformer Winding Temperature Monitoring System Based on Fiber Bragg Grating,” International Journal on Smart Sensing and Intelligent Systems, vol. 8, pp. 538-560, 2015.
[7] T. Wang, S. Korposh, S. James, R. Tatam and S. W. Lee, “Optical fibre long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators B, vol. 185, pp. 117-124, 2013.
[8] N. D. Rees, S. W. James, R.P. Tatam and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir—Blodgett thin-film overlays”, Opt. Lett., vol. 27, pp. 686-688, 2002.
[9] A. S. Guru Prasad, M. Anitha, K. S. Nanjunda Rao and S. Asokan “Measurement of Stress-Strain Response of a Rammed Earth Prism in Compression using Fiber Bragg Grating Sensors”, International Journal on Smart Sensing and Intelligent Systems, vol. 4, pp. 376-387, 2011.
[10] L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby and O. Bang “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Exp., vol. 14, pp. 8224-8231, 2006.
[11] Q. Sui, M. Jiang, Z. Jin, F. Zhang, Y. Cao and L. Jia, “Optical Fiber Relative Humidity Sensor Based on Fabry-Perot Interferometer Coated with Sodium-p-styrenesulfonate/allyamine Hydrochloride Films,” Sensors and Materials, vol. 26, pp. 291-298, 2014.
[12] M. Yin, Q. An, J. Qian and A. Zhang, “Preparation and Application of Fiber-Optic Sensors Based on Layer-by-Layer Self-Assembly Multilayers,” Progress in Chemistry, vol. 23, pp. 2568-2575, 2011.
[13] B. J. Luff, J. S. Wilkinson and G. Perrone, "Indium tin oxide overlayered waveguides for sensor applications," Appl. Opt., vol. 36, pp. 7066-7072, 1997.
[14] M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, and S. He, “Highly Sensitive and Fast Responsive Fiber-Optic Modal Interferometric pH Sensor Based on Polyelectrolyte Complex and Polyelectrolyte Self-Assembled Nanocoating,” Analytical and Bioanalytical Chemistry, vol. 399, pp. 3623-3631, 2011.
[15] L. Bansal and M. A. El-Sherif, “1-5 Napthalenedisulphonic ACID Doped Polypyrrole Thin Films as Coatings to Optical Fibers for Organophosphate Sensing”, International Journal on Smart Sensing and Intelligent Systems, vol. 3, pp. 230-252, 2010.
[16] M. Dashti, J. Mokhtari, M. Nouri and F. Shirini, “Imparting Conductivity and Chromic Behavior on Polyester Fibers by Means of Poly(3-Methylthiophene) Nanocoating,” J Appl Polym Sci, vol. 124, pp. 3007-3012, 2012.
[17] M. Smietana, W. J. Bock, J. Szmidt and G. R. Pickrell “Nanocoating Enhanced Optical Fiber Sensors”, Ceramic Transactions, vol. 222, pp. 275-286, 2010.
[18] P. J. Rivero, A. Urrutia, J. Goicoechea, I. R. Matias and F. J. Arregui, “A Lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing,” Sens. Actuators B, vol. 187, pp. 40-44, 2013.
[19] P. J. Rivero, M. Hernaez, J. Goicoechea, I. R. Matias and F. J. Arregui, “Optical fiber refractometers based on localized Surface plasmon resonance (LSPR) and lossy mode resonance (LMR)” Proc. SPIE 9157, 91574T, 2014.
[20] I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui and I. R. Matias, “Design rules for Lossy mode resonance based sensors,” Appl. Opt., vol. 51, pp. 4298-4307, 2012.
[21] I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui and I. R. Matias, "Generation of lossy mode resonances with absorbing thin-films", J. Lightwave Technol., vol. 28, pp. 3351-3357, 2010.
[22] B. Liedberg, C. Nylander and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B, vol. 4, pp. 299-304, 1983.
[23] R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B, vol. 12, pp. 213-220, 1993.
[24] Y. -. Kim, W. Peng, S. Banerji and K. S. Booksh, "Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases," Opt. Lett., vol. 30, pp. 2218-2220, 2005.
[25] L. Chau, Y. Lin, S. Cheng and T. Lin, “Fiber-optic chemical and biochemical probes based on Localized Surface Plasmon Resonance”, Sens. Actuators B, vol. 113, pp. 100-105, 2006.
[26] Y. Shao, S. Xu, X. Zheng, Y. Wang and W. Xu, “Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer”, Sensors, vol. 10, pp. 3585-3596, 2010.
[27] S. K. Srivastava, V. Arora, S. Sapra and B. D. Gupta, “Localized Surface Plasmon Resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, pp. 261-268, 2012.
[28] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev., vol. 111, pp. 3669-3712, 2011.
[29] P. J. Rivero, A. Urrutia, J. Goicoechea, F. J. Arregui and I. R. Matías, “Humidity Sensor Based on Silver Nanoparticles Embedded in a Polymeric Coating”, International Journal on Smart Sensing and Intelligent Systems, vol. 5, pp. 71-83, 2012.
[30] L. M. Liz-Marzán, "Nanometals: Formation and color", Materials Today, vol. 7, pp. 26-31, 2004.
[31] P. C. Angelomé, H. H. Mezerji, B. Goris, I. Pastoriza-Santos, J. Pérez-Juste, S. Bals and L. M. Liz-Marzán, “Seedless synthesis of single crystalline Au nanoparticles with unusual shapes and tunable LSPR in the Near-IR”, Chem Mat, vol. 24, pp. 1393-1399, 2012.
[32] P. J. Rivero, J. Goicoechea, A. Urrutia and F. J. Arregui, “Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles,” Nanoscale. Res. Lett., vol. 8, pp. 1-9, 2013.
[33] Z. Wang, B. Tan, I. Hussain, N. Schaeffer, M. F. Wyatt, M. Brust and A. I. Cooper, “Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water”, Langmuir, vol. 23, pp. 885-895, 2007.
[34] G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, pp. 1232-1237, 1997.
[35] P. J. Rivero, J. Goicoechea, I. R. Matias and F. J. Arregui, "A comparative study of two different approaches for the incorporation of silver nanoparticles into Layer-by-Layer films" Nanoscale Res. Lett., vol 9, pp. 1-11, 2014.
[36] P. J. Rivero, J. Goicoechea, A. Urrutia, I. R. Matias and F. J. Arregui, “Multicolor layer-by-layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles” Nanoscale Res. Lett., vol8, pp. 1-10, 2013.
[37] P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, "Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles", Sens. Actuators B, vol. 173, pp. 244-249, 2012.

EXTRA FILES

COMMENTS