Optical Detection of Herbicides in Water using Dye- Modified Single Walled Carbon Nanotubes

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

34
Reader(s)
81
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

Optical Detection of Herbicides in Water using Dye- Modified Single Walled Carbon Nanotubes

Hikmat Banimuslem * / Aseel Hassan / Tamara Basova / Asuman Dakoğlu Gülmez / Mahmut Durmuş / Ayşe Gül Gürek / Vefa Ahsen

Keywords : phthalocyanine; carbon nanotubes; TIRE; PCP; 2PC; diuron; simazine

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-5, DOI: https://doi.org/10.21307/ijssis-2019-033

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020

ARTICLE

ABSTRACT

Hybrid materials were produced by mixing CuPcR4 with acidified single-walled carbon nanotubes (SWCNTs) and characterised by UV-Vis absorption spectroscopy, scanning electron microscopy and atomic force microscopy. Thin films of pristine CuPcR4 and SWCNT/CuPcR4 were prepared by spin coating onto gold-coated glass slides and applied as active layers to detect pentachlorophenol (PCP), 2-chlorophenol, diuron and simazine in water utilizing Total Internal Reflection Ellipsometry (TIRE) as an optical detection method. Different concentrations in water ranging from 0.5 to 20 µg/L have been examined in the current work. It is revealed that the shifts in Δ(λ) spectra of SWCNT/CuPcR4 films were evidently larger than those produced by the pristine CuPcR4 films, indicating largely improved films’ sensitivity of the hybrid films.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] L.G. Freitas, H. Singer, S.R. Müller, R.P. Schwarzenbach, C. Stamm, “Source area effects on herbicide losses to surface waters,” A case study in the Swiss Plateau, Agric. Ecosyst. Environ., Vol. 128, pp. 177-184. 2008.

[2] World Health Organization. “Pentachlorophenol,” Environmental Health Criteria 71; World Health Organization, International Programme on Chemical Safety: Geneva, Switzerland, 1987.

[3] A. Di Corcia, C. Crescenzi, E. Guerriero, R. Samperi, “Ultratrace determination of atrazine and its six major degradation products in water by solid-phase extraction and liquid chromatography- electrospray/mass spectrometry,” Environ. Sci. Technol., Vol. 31, pp. 1658-1663, 1997.

[4] R. Koeber, C. Fleischer, F. Lanza, K. Boos, B. Sellergren, D. Barcelót, “Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and highthroughput LC-MS analysis of triazines in river water samples using molecularly imprinted polymers,” Anal. Chem., Vol. 73, pp. 2437-2444, 2001.

[5] S. Rodriguez-Mozaz, M.J. López De Alda, D. Barceló, “Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry,” J. Chromatogr. A., Vol. 1045, pp. 85-92, 2004.

[6] R. Jeannot, H. Sabik, E. Sauvard, E. Genin, “Application of liquid chromatography with mass spectrometry combined with photodiode array detection and tandem mass spectrometry for monitoring pesticides in surface waters,” J. Chromatogr. A.” Vol. 879, pp. 51-71, 2000.

[7] G. Gervais, S. Brosillon, A. Laplanche, C. Helen, “Ultra-pressure liquid chromatography-electrospray tandem mass spectrometry for multiresidue determination of pesticides in water,” J. Chromatogr. A., Vol. 1202, pp.163-172, 2008.

[8] T. Dagnac, S. Bristeau, R. Jeannot, C. Mouvet, N. Baran, “Determination of chloroacetanilides, triazines and phenylureas and some of their metabolites in soils by pressurised liquid extraction, GC-MS/MS, LC-MS and LC-MS/MS,” J. Chromatogr. A., Vol. 1067, pp. 225-233, 2005.

[9] J.D. Wright, J.V. Oliver, R.J.M. Nolte, S.J. Holder, N.A.J.M. Sommerdijk, P.I. Nikitin, “The detection of phenols in water using a surface plasmon resonance system with specific receptors,” Sensor. Actuat. B- Chem., Vol. 51, pp. 305-310, 1998.

[10] T. Basova, A. Hassan, F. Yuksel, A.G. Gürek, V. Ahsen, “Optical detection of pentachlorophenol in water using thin films of octa-tosylamido substituted zinc phthalocyanine,” Sensor. Actuat. B- Chem., Vol. 150, pp. 523-528, 2010.

[11] H. Arwin, M. Poksinski, K. Johansen, “Total internal reflection ellipsometry: Principles and applications,” Appl. Opt., Vol. 43, pp. 3028-3036, 2004.

[12] P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry, Sensor. Actuat. B- Chem., Vol. 84, pp. 278-282, 2002.

[13] B. Lassen, M. Malmsten, “Competitive protein adsorption studied with TIRF and ellipsometry,” J. Colloid Interface Sci., Vol. 179, pp. 470-477, 1996.

[14] A.V. Nabok, A. Tsargorodskaya, A.K. Hassan, N.F. Starodub, “Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins,” Appl. Surf. Sci., Vol. 246, pp. 381-386, 2005.

[15] A. Hassan, T. Basova, F. Yuksel, G. Gümüş, A.G. Gürek, V. Ahsen, “Study of the interaction between simazine and metalsubstituted phthalocyanines using spectral methods,” Sensor. Actuat. B- Chem., Vol. 175, pp. 73-77, 2012.

[16] A. Nabok, A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films., Vol. 516, pp. 8993-9001,2008.

[17] H. Banimuslem, A. Hassan, T. Basova, A. Dakoğlu Gülmez, S. Tuncel, M. Durmuş, A.G. Gürek, V. Ahsen, “Copper phthalocyanine/single walled carbon nanotubes hybrid thin films for pentachlorophenol detection,” Sensor. Actuat. B- Chem., Vol. 190, pp. 990-998, 2014.

[18] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, “Fullerene pipes,” Science. Vol. 280, pp. 1253-1256, 1998.

[19] T.V. Basova, M. Çamur, A.A. Esenpinar, S. Tuncel, A. Hassan, A. Alexeyev, H. Banimuslem, M. Durmuş, A.G. Gürek, V. Ahsen, “Effect of substituents on the orientation of octasubstituted copper(II) phthalocyanine thin films,” Synth. Met., Vol. 162, pp. 735-742, 2012.

[20] N. He, Y. Chen, J. Bai, J. Wang, W.J. Blau, J. Zhu, “Preparation and optical limiting properties of multiwalled carbon nanotubes with -conjugated metal-free phthalocyanine moieties,” J. Phys. Chem. C., Vol. 113, pp. 13029-13035, 2009.

[21] Z. Yang, H. Pu, J. Yuan, D. Wan, Y. Liu, “PhthalocyaninesMWCNT hybrid materials: Fabrication, aggregation and photoconductivity properties improvement,” Chem. Phys. Lett., Vol. 465, pp. 73-77, 2008.

[22] Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E.S. Kong, Y. Zhang, “Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties,” J. Mater. Chem., Vol. 21, pp. 3779-3787, 2011.

[23] J.J. Hernández, M. García-Gutiérrez, D.R. Rueda, T.A. Ezquerra, R.J. Davies, “Influence of single wall carbon nanotubes and thermal treatment on the morphology of polymer thin films,” Composites Sci. Technol., Vol. 72, pp. 421-427, 2012.

[24] T. Basova, A. Tsargorodskaya, A. Nabok, A.K. Hassan, A.G. Gürek, G. Gümus, V. Ahsen, “Investigation of gas-sensing properties of copper phthalocyanine films,” Mater. Sci. Eng. C., Vol. 29, pp. 814-818, 2009.

[25] M. Salam, “Effect of oxidation treatment of multi-walled carbon nanotubes on the adsorption of pentachlorophenol from aqueous solution: Kinetics study,” Arab. J. Chem., Vol. 5, pp. 291-296, 2012.

[26] A. Hassan, T. Basova, S. Tuncel, F. Yuksel, A.G. Gürek, V. Ahsen, “Phthalocyanine films as active layers of optical sensors for pentachlorophenol and simazine detection,” Procedia Eng., Vol. 25, pp. 272-275, 2011.

EXTRA FILES

COMMENTS