Zirconia potentiometric oxygen sensor activation using NEMCA


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

Zirconia potentiometric oxygen sensor activation using NEMCA

Pavel Shuk * / Robert Jantzt

Keywords : zirconia; potentiometric oxygen sensor; impedance; response; re-activation; NEMCA effect

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-4, DOI: https://doi.org/10.21307/ijssis-2019-036

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020



NEMCA known for the increasing the catalytic activity/selectivity of the gas exposed electrodes was investigated for the potentiometric zirconia oxygen sensor activation. Electrochemical promotion of O2-sensors with Pt-cermet electrodes aged in the field was significant with up to 5 times in the impedance reduction. Stability test on the NEMCA activated O2-sensors was showing just a minor impedance increase. Sensor response time was reduced by NEMCA effect by ~5-10% with up to 3 times signal noise reduction on the aged O2-sensors.

Content not available PDF Share



[1] H. Peters and H.-H. Möbius, “Procedure for the gas analysis at elevated temperatures using galvanic solid electrolyte elements”, DD-Patent 21673, August 1961.

[2] J. Weissbart and R. Ruka, „Oxygen gauge“, Rev. Sci. Instrum., vol. 32, pp. 593-595, May 1961.

[3] H.-H. Möbius, “Solid state electrochemical potentiometric sensors for gas analysis”, in Sensors a comprehensive survey, vol. 3, W. Göpel, J. Hesse, J. N. Zemel, Eds. New York: VCH, pp. 1105-1154, 1992.

[4] W. C. Maskell, “Progress in the development of zirconia gas sensors”, Solid State Ionics, vol. 134, p. 43-50, January 2000.

[5] S. Zhuiykov, Electrochemistry of zirconia gas sensors, Boca Raton/London/New York, CRC Press, 2008.

[6] P. Shuk, “Process zirconia oxygen analyzer: state of art”, Technisches Messen, vol. 77, No 1, pp. 19-23, January 2010.

[7] C. G. Vayenas, S. Bebelis, S. Neophytides, "Non-Faradaic electrochemical modification of catalytic activity", J. Phys. Chem., vol. 92, pp. 5083-5085, N 18, 1988.

[8] C. G. Vayenas, S. Bebelis and S. Ladas, “Dependence of catalytic rates on catalyst work function”, Nature, vol. 343, pp. 625-627, February 1990.

[9] Y. Jiang, I. V. Yentekakis and C. G. Vayenas, “Methane to ethylene with 85 percent yield in a gas recycle electrocatalytic reactor-separator”, Science, vol. 264, pp. 1563-1566, June 1994.

[10] C. G. Vayenas and S. I. Bebelis, “Electrocatalysis, catalysis and electrochemical promotion in solid electrolyte cells”, in Oxygen ion and mixed conductors and their technological applications, H. L. Tuller, J. Schoonman, I. Riess, Eds. Dordrecht-Boston-London, Kluwer Academic Publishers, 2000, pp. 123-164.

[11] C. G. Vayenas, S. Bebelis, C. Pliangos, S Brosda and D. Tsiplakides, Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions, Kluwer Academic, New York, 2001.

[12] C. G. Vayenas, A. Katsaounis, S. Brosda and A. Hammad. “Electrochemical modification of catalytic activity”, in Handbook of Heterogeneous Catalysis, vol 8, G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp, Eds. Weinheim, Wiley-VCH Publishers, 2007, pp. 19051935.

[13] A. Katsaounis, "Electrochemical promotion of catalysis (EPOC) perspectives for application to gas emissions treatment", Global NEST, vol. 10, pp. 226-236, February 2008.

[14] C. G. Vayenas and C. G. Koutsodontis, “Non-Faradaic electrochemical activation of catalysis”,  J. Chem. Phys., vol. 128, 182506, pp. 1-13, 2008.

[15] C. G. Vayenas: “Bridging electrochemistry and heterogeneous catalysis”, J. Solid State Electrochem., vol. 15, pp. 1425-1435, March 2011.

[16] P. Shuk, E. Bailey, U. Guth, “Zirconia oxygen sensor for the process application: state-of-the-art”, Sensors & Transducers Journal, vol. 90, pp. 174-184, April 2008.

[17] K. Kinoshitta, Electrochemical oxygen technology, John Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore, 1992.