What happens at the aroma of coffee beans after roasting?

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

14
Reader(s)
51
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

What happens at the aroma of coffee beans after roasting?

Veronica Sberveglieri * / Andrea Pulvirenti / Elisabetta Comini / Estefania Nunez Carmona

Keywords : component; MOX nanowire sensors, electronic nose, coffee beans, GC-MS, colorimeter

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-4, DOI: https://doi.org/10.21307/ijssis-2019-052

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020

ARTICLE

ABSTRACT

The coffee aroma is one of the most important quality evaluation criteria employed for coffee commercialization and consumption. The purpose of this study was following the roasting process VOCs creations with the novel Electronic Nose equipped whit 2 of 6 MOX nanowire sensors. The nanowires exhibit exceptional crystalline quality and a very high length-to-width ratio, resulting in enhanced sensing capability as well as long-term material stability for prolonged operation. Four different methods of roasting, made by ROSTAMATIC (Table 1) machine, were applied to gain a clearer picture of the differences in roasted coffee aromas by means of a volatile compound analysis. Different methods applied on four different origins of green coffee (India, Indonesia, Honduras, Santos and Nicaragua). The commercial coffees products are made from a blending from minimum five different kinds of coffee and the consumers have developed an addiction/expectation to a specific flavor and taste. Different methods of roasting process will provide the coffee different aroma that will add flexibility to those one that already posses the matrix due to different origins.  This work tests and illustrates the broad spectrum of potential uses of the EN technique in food quality control.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] P. D. C. Mancha Agresti, A. S. Franca, L. S. Oliveira, and R. Augusti, “Discrimination between defective and non-defective Brazilian coffee beans by their volatile profile,” Food Chem., vol. 106, no. 2, pp. 787–796, Jan. 2008.

[2] G. Sberveglieri, I. Concina, E. Comini, M. Falasconi, M. Ferroni, and V. Sberveglieri, “Synthesis and integration of tin oxide nanowires into an electronic nose,” Vacuum, vol. 86, no. 5, pp. 532– 535, Jan. 2012.

[3] J. W. Gardner, H. V. Shurmer, and T. T. Tan, “Application of an electronic nose to the discrimination of coffees,” Sensors Actuators B Chem., vol. 6, no. 1–3, pp. 71–75, Jan. 1992.

[4] D. D. Roberts, P. Pollien, and C. Milo, “Solid-phase microextraction method development for headspace analysis of volatile flavor compounds.,” J. Agric. Food Chem., vol. 48, no. 6, pp. 2430–7, Jun. 2000.

[5] T. Dewettinck, K. Van Hege, and W. Verstraete, “The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater.,” Water Res., vol. 35, no. 10, pp. 2475–83, Jul. 2001.

[6] O. Gonzalez-Rios, M. L. Suarez-Quiroz, R. Boulanger, M. Barel, B. Guyot, J.-P. Guiraud, and S. Schorr-Galindo, “Impact of ‘ecological’ post-harvest processing on the volatile fraction of coffee beans: I. Green coffee,” J. Food Compos. Anal., vol. 20, no. 3–4, pp. 289–296, May 2007.

[7] C. Yeretzian, A. Jordan, R. Badoud, and W. Lindinger, “From the green bean to the cup of coffee: investigating coffee roasting by online monitoring of volatiles,” Eur. Food Res. Technol., vol. 214, no. 2, pp. 92–104, Feb. 2002.

[8] F. Mestdagh, T. Davidek, M. Chaumonteuil, B. Folmer, and I. Blank, “The kinetics of coffee aroma extraction,” Food Res. Int., Mar. 2014.

[9] J. S. Ribeiro, M. M. C. Ferreira, and T. J. G. Salva, “Talanta Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy,” Talanta, vol. 83, no. 5, pp. 1352–1358, 2011.

[10] J.-K. Moon and T. Shibamoto, “Role of Roasting Conditions in the Profile of Volatile Flavor Chemicals Formed from Coffee Beans,” J. Agric. Food Chem., vol. 57, no. 13, pp. 5823–5831, Jul. 2009.

[11] E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri, and G. Sberveglieri, “Metal oxide nanoscience and nanotechnology for chemical sensors,” Sensors Actuators B Chem., Oct. 2012.

[12] S. Kandasamy, a. Trinchi, M. K. Ghantasala, G. F. Peaslee, a. Holland, W. Wlodarski, and E. Comini, “Characterization and testing of Pt/TiO2/SiC thin film layered structure for gas sensing,” Thin Solid Films, vol. 542, pp. 404–408, Sep. 2013.

[13] D. Zappa, E. Comini, R. Zamani, J. Arbiol, J. R. Morante, and G. Sberveglieri, “Preparation of copper oxide nanowire-based conductometric chemical sensors,” Sensors Actuators B Chem., vol. 182, pp. 7–15, Jun. 2013.

[14] E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri, and G. Sberveglieri, “Metal oxide nanoscience and nanotechnology for chemical sensors,” Sensors Actuators B Chem., no. 2010, Oct. 2012.

[15] M. Falasconi, I. Concina, E. Gobbi, V. Sberveglieri, a. Pulvirenti, and G. Sberveglieri, “Electronic Nose for Microbiological Quality Control of Food Products,” Int. J. Electrochem., vol. 2012, pp. 1– 12, 2012.

[16] E. Ongo, M. Falasconi, G. Sberveglieri, a. Antonelli, G. Montevecchi, V. Sberveglieri, I. Concina, and F. Sevilla III, “Chemometric Discrimination of Philippine Civet Coffee Using Electronic Nose and Gas Chromatography Mass Spectrometry,” Procedia Eng., vol. 47, pp. 977–980, Jan. 2012.

[17] E. N. Carmona, V. Sberveglieri, and A. Pulvirenti, “Detection of microorganisms in water and different food matrix by Electronic Nose,” 2013 Seventh Int. Conf. Sens. Technol., pp. 699–703, Dec. 2013.

[18] V. Sberveglieri, E. Comini, R. Emilia, V. Amendola, and R. Emilia, “Electronic nose for the early detection of different types of indigenous mold contamination in green coffee,” 2013 Seventh Int. Conf. Sens. Technol., pp. 465–469, 2013.

[19] V. Sberveglieri, E. N. Carmona, E. Comini, A. Ponzoni, D. Zappa, O. Pirrotta, and A. Pulvirenti, “Research Article A Novel Electronic Nose as Adaptable Device to Judge Microbiological Quality and Safety in Foodstuff,” Biomed Res. Int., vol. 2014, pp. 1–6, 2014.

EXTRA FILES

COMMENTS