Thermopile power measurement for heat balance calorimetry


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

Thermopile power measurement for heat balance calorimetry

Callum M. Johnston * / Bryan P. Ruddy / Poul M. F. Nielsen / Andrew J. Taberner

Keywords : Calorimetry, thermal variables measurement, thermal sensors, thermal noise

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-6, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020



Very high resolution power sensors are required for measuring the rate of heat production (~10 µW) of small samples of heart muscle (rat cardiac trabeculae, ~2 mm long and ~200 µm diameter). In this paper, we examine the design criteria for thermopiles to maximize their signal-to-noise ratio for heat balance calorimetry. We found that those thermopiles with a high thermoelectric figure-of-merit (ZT) are the best for power measurements. An initial prototype with a resolution of 53 nW has been built.

Content not available PDF Share



[1] J. Steinbach, Safety Assessment for Chemical Processes. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1998.

[2] M. Meeks, “An analog computer study of polymerization rates in vinyl chloride suspensions,” Polym. Eng. Sci., no. 2, pp. 141–151, 1969.

[3] A. Zogg, F. Stoessel, U. Fischer, and K. Hungerbühler, “Isothermal reaction calorimetry as a tool for kinetic analysis,” Thermochim. Acta, vol. 419, no. 1–2, pp. 1–17, Sep. 2004.

[4] J. Daut and G. Elzinga, “Heat Production of Quiescent Ventricular Trabeculae Isolated from Guinea-Pig Heart,” J. Physiol., vol. 398, no. 1988, pp. 259–275, 1988.

[5] K. Lee, “A new technique for the simultaneous recording of oxygen consumption and contraction of muscle: the effect of ouabain on cat papillary muscle,” J. Pharmacol. Exp. Ther., pp. 304–312, 1953.

[6] J.-C. Han, A. J. Taberner, R. S. Kirton, P. M. F. Nielsen, R. Archer, N. Kim, and D. S. Loiselle, “Radius-dependent decline of performance in isolated cardiac muscle does not reflect inadequacy of diffusive oxygen supply,” Am. J. Physiol. - Hear. Circ. Physiol., pp. 1222–1236, 2011.

[7] J.-C. Han, A. J. Taberner, R. S. Kirton, P. M. F. Nielsen, N. P. Smith, and D. S. Loiselle, “A unique micromechanocalorimeter for simultaneous measurement of heat rate and force production of cardiac trabeculae carnae,” J. Appl. Physiol., vol. 107, pp. 946–951, 2009.

[8] M. Zieren, R. Willnauer, and J. Köhler, “Flow-through chip calorimeter based on BiSb/Sb-thin-film thermopiles with a thermopower of 64 mV/K,” Micro Total Anal. Syst. 2000, no. 100, pp. 71–74, 2000.

[9] A. W. van Herwaarden, P. M. Sarro, J. W. Gardner, and P. Bataillard, “Liquid and gas micro-calorimeters for (bio)chemical measurements,” Sensors Actuators A Phys., vol. 43, no. 1–3, pp. 24– 30, May 1994.

[10] V. Baier, A. Ihring, E. Kessler, J. Lerchner, and G. Wolf, “Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes,” Sensors Actuators A Phys., vol. 123– 124, pp. 354–359, Sep. 2005.

[11] J. Lerchner, a. Wolf, G. Wolf, V. Baier, E. Kessler, M. Nietzsch, and M. Krügel, “A new micro-fluid chip calorimeter for biochemical applications,” Thermochim. Acta, vol. 445, no. 2, pp. 144–150, Jun. 2006.

[12] A. J. Taberner, I. W. Hunter, R. S. Kirton, P. M. F. Nielsen, and D. S. Loiselle, “Characterization of a flow-through microcalorimeter for measuring the heat production of cardiac trabeculae,” Rev. Sci. Instrum., vol. 76, no. 10, pp. 104902–7, Oct. 2005.

[13] J. H. Lienhard IV and J. H. Lienhard V, A heat transfer textbook, 4th ed., vol. 27, no. 4. Cambridge, MA: Phlogiston Press, 2011

[14] M. C. Foote, E. W. Jones, and T. Caillat, “Uncooled thermopile infrared detector linear arrays with detectivity greater than 109 cmHz1/2/W,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1896–1902, 1998.

[15] B. Yang, H. Ahuja, and T. Tran, “Review Article: Thermoelectric Technology Assessment: Application to Air Conditioning and Refrigeration,” HVAC&R Res., no. January 2014, pp. 37–41, 2008.

[16] H. Kraus, “Superconductive bolometers and calorimeters,” Supercond. Sci. Technol., vol. 9, no. 10, pp. 827–842, Oct. 1996.

[17] W. Franzen, “Nonisothermal Superconducting Bolometer: Theory of Operation,” J. Opt. Soc. Am., vol. 53, no. 5, p. 596, May 1963.