As-growth and Annealing Porous Silicon Mirrors for Optical Applications in the UV

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

23
Reader(s)
52
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

As-growth and Annealing Porous Silicon Mirrors for Optical Applications in the UV

F. Morales Morales / G. García Salgado / J. A. Luna López * / T. Díaz / E. Rosendo / H. Juárez / K. Monfil Leyva / D. Hernández de la Luz

Keywords : Porous Silicon; Thermal oxidation; Multilayer;reflectance spectroscopy: ultraviolet (UV).

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-6, DOI: https://doi.org/10.21307/ijssis-2019-109

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020

ARTICLE

ABSTRACT

This work presents a study of the evolution of the reflectance spectra of porous silicon as-growth and with thermal oxidation under controlled conditions. Porous silicon layers were prepared by electrochemical anodization of a silicon substrate p+ in an aqueous solution of hydrofluoric acid and ethanol. Multilayer structures were formed on the basis of porous silicon, two different layers were realized by controlling the refraction index of each one of the layers using the Bruggemann model, in this case for multilayer as-growth, and subsequently a dry oxidation was performed to observe the change in refractive index and reflectance. A model that contains the refractive index of silicon, air and silicon oxide is used for predicting the behavior of the reflectance spectra. With this model is possible to control the width of the reflectance spectrum of the band pass or also called Distributed Bragg Reflector (DBR), DBR were characterized and measured by SEM and UV-VIS spectroscopy. Reflectance spectra were obtained and we can see that the annealing provoked a shifted towards the ultra violet (UV). These changes on reflectance and refractive indexes indicate that oxidation processes can modify the multilayer porous silicon. The optical band gap energy (Eg) was obtained from 4.36 to 3.98 eV to the DBR. These low cost devices open the way to the development of optical sensing in UV entirely based on silicon.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] Z.C. Feng, R. Tsu. Porous Silicon, World Scientific, Singapore, Chap. 18, 19, 22, 1994.

[2] L. Pavesi, R. Guardini, C. Mazzoleni, Solid State Comm, Vol. 97, pp 1051, 1996. 

[3] V. Torres-Costa, R.J. Martín-Palma, J.M. Martínez-Duart, Material Science and Engineering C, Vol. 27, pp 954-956, 2007.

[4] L.Z. Yu, C.R. Wie, Electronics Letter, Vol. 28, pp. 911, 1992.

[5] A.M. Rossi, H.G. Bohn, Phys. Stat. Solid, Vol. 202, pp. 1644, 2005.

[6] M. Grau, N.T. Nguyen, A. Straboni, M. Lemiti, European Materials Research Society Conference Symp. Advanced Inorganic Materials and Concepts for Photovoltaics, Vol. 10, pp. 8-13, 2011.

[7] V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, Applied Physics A, Vol. 79, no. 8, pp. 1919–1923, 2004.

[8] E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, Applied Optics, Vol. 44, Issue 26, pp. 54155421 2005.

[9] Mien-Liang Lin, Yu-Cheng Lin, Kuen-Hsien Wu, Cih-Pu Huang, , Thin Solid Films, Vol. 529, pp 275-277, 2013.

[10] I. Suemune, N. Noguchi, M. Yamanishi, J. Appl. Phys, Vol 31, pp 494, 1992.

[11] L.A. Balagurov, S.C. Bayliss, S. Ya. Andrushin, A.F. Orlov, B. Unal, D.G. Yarkin, E.A. Petrova, Solid-State Electron, Vol 45, pp. 1607, 2001.

[12] M.K. Lee, Y.H. Wang, C.H. Chu, Sol. Energy Mater. Sol. Cells, Vol 59, pp.59, 1999.

[13] L. Pavesi, Riv. Nuovo Cimento Vol 20, pp.1-78, 1997.

[14] N. Khosida, A. Kojima, Y. Nakajima, Mater. Sci Eng . C 19 285. 2002.

[15] D. Brumhead, L.T. Canham, D.M. Seekings, P.J. Tufton, Electrochim. Acta 38, 191. 1993.

[16] W. M. Merrill, R. E. Diaz, M. M. Lore, M. C. Squires, and N. G. Alexopoulos, IEEE Transactions on antennas and propagation, Vol. 47, no. 1, 1999.

[17] R.J.Martín-Palma, L. Pascual, P. Herrero and J.M.Martínez Duart, Appl. Phys. Lett. Vol. 81 (1) pp. 25-27, 2002.

[18] A Janshoff K-P.S. Dancil, C. Steinem, D. P. Greiner, V. S.-Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor, M. Reza Ghadiri, J. Am. Chem. Soc., 120 (46), pp.12108–12116, 1998.

[19] E. V. Astrova, V. B. Voronkov, A. D. Remenyuk, and V. B. Shuman, V. A. Tolmachev, Semiconductors, Vol. 33, Issue 10, pp 1149-1155, 1999.

[20] J. E. Lugo, H. A. Lopez, S. Chan and P. M. Fauchet, J. Appl. Phys. Vol. 91, 4966 2002.

[21] J. D. Joannopoulos, The Almost-Magical World of Photonic Crystals, Brazilian Journal of Physics, Vol. 26, pp 58, 1996.

[22] A. E. Morales, E. S. Mora, and U. Pal, Revista Mexicana De Física S, (5) Vol 53, pp 18-22, 2007.

[23] M. Yamada and K. Kondo, Jpn. J. Appl. Phys. Vol.31, pp.L993, 1992.

[24] J. Charrier, P. Pirasteh, Y.G. Boucher, M. Gadonna, Micro & Nano Letters, Vol. 7, Iss. 2, pp. 105–108 2012.

[25] C. Pacholski, Sensors, Vol. 13, pp.4694-4713, 2013.

[26] Y.R. Choi, M. Zheng, F. Bai, J. Liu, E-S. Tok, Z. Huang, C-H. Sow, . Sci. Rep. 4, 4940; 2014.

EXTRA FILES

COMMENTS