Detection of Pathogenic Bacteria in Aqueous Media: Assessing the Potential of Real-Time Electromagnetic Wave Sensing

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering , Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

15
Reader(s)
42
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

Detection of Pathogenic Bacteria in Aqueous Media: Assessing the Potential of Real-Time Electromagnetic Wave Sensing

I. Nakouti / O. Korostynska * / A. Mason / A. I. Al-Shamma’a

Keywords : Pseudomonas aeruginosa, Escherichia coli, realtime analysis, electromagnetic wave sensor, planar Au pattern

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-6, DOI: https://doi.org/10.21307/ijssis-2019-132

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020

ARTICLE

ABSTRACT

This paper reports on the capabilities of a novel electromagnetic wave sensing method to detect and identify the presence of various pathogenic bacteria in aqueous media. In particular, the change in the electromagnetic wave signal in microwave frequency range is used as an indicator of bacteria presence. The assessment was conducted by recording reflected signal spectra when the sensor was in contact with deionised water, Escherichia coli, sterile nutrient broth and Pseudomonas aeruginosa solutions. The distinct feature of the proposed system is that the detection is performed in real time, without the need for additional sample processing or chemicals. This bacteria detection method would be of benefit in a broad range of applications, ranging from water quality monitoring in wastewater treatment facilities to safety assurance in healthcare and food industry.

 

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] M. S. Donnenberg, Escherichia coli : pathotypes and principles of pathogenesis / edited by Michael S. Donnenberg: Amsterdam : Academic Press, 2013.

[2] M. A. Savageau, "Escherichia coli habitats, cell types, and molecular mechanisms of gene control.," Americal Naturalist, vol. 122, pp. 732744, 1983.

[3] E. D. Berry and D. N. Miller, "Cattle feedlot soil moisture and manure content: II. impact on Escherichia coli O157," Journal of Environmental Quality, vol. 34, pp. 656-663, 2005.

[4] S. Ishii, W. B. Ksoll, R. E. Hicks, and M. J. Sadoswky, "Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds.," Applied and Environmental Microbiology, vol. 72, pp. 612-621, 2006.

[5] S. H. Na, K. Miyanaga, H. Unno, and Y. Tanji, "The survival response of Escherichia coli K12 in a natural environment," Applied Microbiology and Biotechnology,vol. 72, pp. 386-392, 2006.

[6] I. D. Ogden, D. R. Fenlon, A. J. A. Vinten, and D. Lewis, "The fate of Escherichia coli O157 in soil and its potential to contaminate drinking water," Internation Journal of Food Microbiology, vol. 66, pp. 111-117, 2001.

[7] H. M. Solo-Gabriele, M. A. Wolfert, T. R. Desmarais, and C. J. Palmer, "Sources of Escherichia coli in a coastal subtropical environment," Applied  Enviromental Microbiology,vol. 66, pp. 230-237, 2000.

[8] M. D. Winfield and E. A. Groisman, "Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. ," Applied and Environmental Microbiology,vol. 69, pp. 3687-3694, 2003.

[9] A. P. Williams, L. M. Avery, K. Killham, and D. L. Jones, "Persistence ofEscherichia coli O157 on farm surfaces under different environmental conditions," Journal of Applied Microbiology, vol. 98, pp. 1075-1083, 2005.

[10] M. Byappanahalli and R. Fujioka., "Indigenous soil bacteria and low moisture may limit but allo faecal bacteria to multiply and become a minor population in tropical soils.," Water, Science and Technology, vol. 50, pp. 27-32, 2004.

[11] M. N. Byappanahalli, R. L. Whitman, D. L. Shively, M. G. Sadowsky, and S. Ishii, "Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environ. ," Enviromental Microbiology, vol. 8, pp. 504-513, 2006.

[12] Foodborne illeness. 2005. Available: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/files/foodborne_illness_F AQ.pdf

[13] Water, Sanitation and hygiene links to health: facts and figures. 2004. Available: http://www.who.int/water_sanitation_health/factsfigures2005.pdf

[14] P. S. Mead and L. Slutsker, "Food-related illness and death in the United States. ," Emerging Infectious Diseases, vol. 5, pp. 607-625, 1999.

[15] H. Michino and K. Araki, Minami, et al, Recent outbreaks of infections caused by Escherichia coli O157:H7 in Japan. Washington, D.C: ASM Press, 1998.

[16] C. f. D. C. a. Prevention, "Multistate Outbreak of Shiga Toxin-producing Escherichia coli O157:H7 Infections Linked to Organic Spinach and Spring Mix Blend (Final Update)," 2006.

[17] U. S. D. o. A. E. R. Service. (2004, Economics of Foodborne Disease. Available: http://www.ers.usda.gov/briefing/foodbornedisease/

[18] H. Leclerc, D. A. A. Mossel, S. C. Edberg, and C. B. Struijk, "Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety," Annual Reviews of Microbiology, vol. 55, pp. 201-234, 2001.

[19] M. Kirs and D. C. Smith, "Multiplex quantitative eal-time reverse transcriptase PCR for F+- specific RNA coliphages " Applied and Environmental Microbiology,vol. 73, pp. 808-814, 2007.

[20] N. T. Thet, S. H. Hong, S. Marshall, M. Laabei, A. Toby, and A. Jenkins, "Visible, colorimetric dissemination between pathogenic strains of Staphylococcus aureus and Pseudomonas aeruginosa using fluorescent dye containing lipid vesicles," Biosensors and Bioelectronics, vol. 41, pp. 538-543, 2013.

[21] F. M. Husain and I. Ahmad, "Doxycycline interferes with quorum sensing-mediated virulence factors and biofilm formation in Gramnegative bacteria," pp. 1-9, 2013.

[22] R. Benabid, J. Wartelle, L. Malleret, N. Guyot, S. Gangloff, F. Lebargy, and A. Belaaouaj, "Neutrophil elastase modulates cytokine expression: Contribution to host defense against pseudomonas aeruginosa-induced pneumonia," Journal of Biological Chemistry, vol. 287, pp. 3488334894, 2012.

[23] J. T. Hodgkinson, W. R. J. D. Galloway, M. Wright, I. K. Mati, R. L. Nicholson, M. Welch, and D. R. Spring, "Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa," Organic and Biomolecular Chemistry, vol. 10, pp. 6032-6044, 2012.

[24] I. Vaz-Moreira, O. C. Nunes, and C. M. Manaia, "Diversity and antibiotic resistance in Pseudomonas spp. from drinking water," Science of The Total Environment, vol. 426, pp. 366-374, 2012.

[25] R. Saha, N. Saha, R. S. Donofrio, and L. L. Bestervelt, "Microbial siderophores: a mini review," Journal of Basic Microbiology, pp. n/an/a, 2012.

[26] M. I. Gómez and A. Prince, "Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis," Current Opinion in Pharmacology,vol. 7, pp. 244-251, 2007.

[27] D. J. Hassett, T. R. Korfhagen, R. T. Irvin, M. J. Schurr, K. Sauer, G. W. Lau, M. D. Sutton, H. Yu, and N. Hoiby, "Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies," Expert Opin Ther Targets, vol. 14, pp. 117-30, 2010.

[28] L. E. Bryan, S. D. Semaka, H. M. Van den Elzen, J. E. Kinnear, and R. L. Whitehouse, "Characteristics of R931 and other Pseudomonas aeruginosa R factors," Antimicrob Agents Chemother,vol. 3, pp. 625-37, 1973.

[29] A. M. Chakrabarty, "Plasmids in Pseudomonas," Annual Review of Genetics, vol. 10, pp. 7-30, 1976.

[30] S. Iyobe, K. Hasuda, A. Fuse, and S. Mitsuhashi, "Demonstration of R factors from Pseudomonas aeruginosa," Antimicrob Agents Chemother, vol. 5, pp. 547-52, 1974.

[31] P. Kontomichalou, E. Papachristou, and F. Angelatou, "Multiresistant plasmids from Pseudomonas aeruginosa highly resistant to either or both gentamicin and carbenicillin," Antimicrob Agents Chemother, vol. 9, pp. 866-73, 1976.

[32] P. Deschaght, S. Van Daele, F. De Baets, and M. Vaneechoutte, "PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review," J Cyst Fibros, vol. 10, pp. 293-7, 2011.

[33] A. Van Belkum, N. H. Renders, S. Smith, S. E. Overbeek, and H. A. Verbrugh, "Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients," FEMS Immunol Med Microbiol, vol. 27, pp. 51-7, 2000.

[34] K. Waszczuk, G. Gula, M. Swiatkowski, J. Olszewski, Z. Drulis-Kawa, J. Gutowicz, and T. Gotszalk, "Evaluation of Pseudomonas aeruginosa biofilm formation using piezoelectric tuning forks mass sensors," Procedia Engineering, vol. 5, pp. 820-823, 2010.

[35] K. Waszczuk, G. Gula, M. Swiatkowski, J. Olszewski, W. Herwich, Z. Drulis-Kawa, J. Gutowicz, and T. Gotszalk, "Evaluation of Pseudomonas aeruginosa biofilm formation using piezoelectric tuning fork mass sensors," Sensors and Actuators B: Chemical, vol. 170, pp. 712, 2012.

[36] P. Pang, X. Xiao, Q. Cai, S. Yao, and C. A. Grimes, "A wireless magnetoelastic-sensing device for in situ evaluation of Pseudomonas aeruginosa biofilm formation," Sensors and Actuators B: Chemical, vol. 133, pp. 473-477, 2008.

[37] P. Pang, S. Huang, Q. Cai, S. Yao, K. Zeng, and C. A. Grimes, "Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device," Biosensors and Bioelectronics, vol. 23, pp. 295-299, 2007.

[38] A. Mason, O. Korostynska, and A. I. Al-Shamma’a, "Microwave Sensors for Real-Time Nutrients Detection in Water," in Smart Sensors for Real-Time Water Quality Monitoring, S. C. Mukhopadhyay and A. Mason, Eds., ed: Springer Berlin Heidelberg, 2013, pp. 197-216.

[39] M. Ortoneda-Pedrola, O. Korostynska, A. Mason, and A. I. AlShamma'A, "Real-time sensing of NaCl solution concentration at microwave frequencies using novel Ag patterns printed on flexible substrates," Journal of Physics: Conference Series, vol. 450, pp. 1-4, 2013.

[40] M. Ortoneda-Pedrola, O. Korostynska, A. Mason, and A. I. AlShamma'A, "Real-time microwave sensor for KCl, MnCl2 and CuCl solutions concentration with Ag patterns printed on flexible substrates," Journal of Physics: Conference Series,vol. 450, pp. 1-4, 2013.

[41] O. Korostynska, A. Mason, and A. I. Al-Shamma’a, "Flexible microwave sensors for real-time analysis of water contaminants," Journal of Electromagnetic Waves and Applications, vol. 27, pp. 20752089, 1 Nov 2013.

[42] O. Korostynska, A. Mason, M. Ortoneda-Pedrola, and A. Al-Shamma’a, "Electromagnetic wave sensing of NO3 and COD concentrations for real-time environmental and industrial monitoring," Sensors and Actuators B: Chemical, vol. 198, pp. 49-54, 2014.

[43] O. Korostynska, M. Ortoneda-Pedrola, A. Mason, and A. I. AlShamma'a, "Flexible electromagnetic wave sensor operating at GHz frequencies for instantaneous concentration measurements of NaCl, KCl, MnCl 2 and CuCl solutions," Measurement Science and Technology, vol. 25, p. 065105, 2014.

[44] T. Nacke, A. Barthel, C. Pflieger, U. Pliquett, D. Beckmann, and A. Goller, "Continuous process monitoring for biogas plants using microwave sensors," in 12th Biennial Baltic Electronics Conference (BEC) Tallinn, Estonia, 2010, pp. 239-242.

[45] O. Korostynska, R. Blakey, A. Mason, and A. Al-Shamma’a, "Novel method for vegetable oil type verification based on real-time microwave sensing,"Sensors and Actuators A: Physical,2013.

[46] O. Korostynska, A. Arshak, P. Creedon, K. Arshak, L. Wendling, A. I. Al-Shamma'a, and S. O'Keeffe, "Glucose monitoring using electromagnetic waves and microsensor with interdigitated electrodes," in IEEE Sensors Applications Symposium, SAS, New Orleans, LA, USA, 2009, pp. 34-37.

[47] A. Mason, S. Wylie, A. Thomas, H. Keele, A. Shaw, and A. AlShamma’a, "HEPA Filter Material Load Detection Using a Microwave Cavity Sensor," International Journal on Smart Sensing and Intelligent Systems, vol. 3, pp. 322-337, Sep 2010.

[48] A. Al-Shamma'a, A. Mason, and A. Shaw, "Patent: Non-Invasive Monitoring Device," US2012150000 (A1), WO2010131029 (A1), EP2429397 (A1), 2012.

[49] A. Mason, A. Shaw, and A. Al-Shamma’a, "A Co-Planar Microwave Sensor for Biomedical Applications," Procedia Engineering, vol. 47, pp. 438-441, 2012.

[50] J. H. Goh, A. Mason, M. Field, P. Browning, and A. I. Al-Shamma’a, "Using a Microwave Sensor as an Online Indicator of Neurological Impairment during Surgical Procedures," Key Engineering Materials, vol. 543, pp. 368-371, 2013.

[51] D. Kajfez, "Temperature characterization of dielectric-resonator materials," Journal of the European Ceramic Society, vol. 21, pp. 26632667, 2001.

[52] O. Korostynska, R. Blakey, A. Mason, and A. Al-Shamma’a, "Novel method for vegetable oil type verification based on real-time microwave sensing," Sensors and Actuators A: Physical, vol. 202, pp. 211-216, 2013.

[53] A. Mason, O. Korostynska, M. Ortoneda-Pedrola, A. Shaw, and A. AlShamma’a, "A resonant co-planar sensor at microwave frequencies for biomedical applications," Sensors and Actuators A: Physical, vol. 202, pp. 170-175, 2013.

[54] A. Mason, O. Korostynska, S. Wylie, and A. I. Al-Shamma’a, "Nondestructive evaluation of an activated carbon using microwaves to determine residual life," Carbon,vol. 67, pp. 1-9, 2014.

[55] R. Blakey, I. Nakouti, O. Korostynska, A. Mason, and A. Al-Shamma'a, "Real-Time Monitoring of Pseudomonas Aeruginosa Concentration Using a Novel Electromagnetic Sensors Microfluidic Cell Structure," IEEE Trans Biomed Eng, vol. 12, p. 12, 2013.

[56] D. Guha and Y. M. M. Antar, Microstrip and Printed Antennas: New Trends, Techniques and Applications. Chichester, West Sussex, United Kingdom: Wiley, 2010.

[57] M. A. Jader, O. Korostynska, A. Mason, and A. I. Al-Shamma'A, "Nondestructive volume and thickness measurements with planar microwave sensors," in 2013 IEEE 33rd International Scientific Conference Electronics and Nanotechnology, ELNANO 2013, April 16, 2013 - April 19, 2013, Kyiv, Ukraine, 2013, pp. 465-468.

[58] E. Bader, A. Attar, A. Mason, L. Wendling, and A. I. Al-Shamma'a, "Investigation of an Embedded Microwave Spectrometer for Alcohol Detection and Measurement," presented at the Fourth International Conference on Sensing Technology (ICST2010), Lecce, Italy, 2010.

[59] R. Blakey, I. Nakouti, O. Korostynska, A. Mason, and A. Al-Shamma'a, "Real-Time Monitoring of Pseudomonas Aeruginosa Concentration Using a Novel Electromagnetic Sensors Microfluidic Cell Structure," Biomedical Engineering, IEEE Transactions on, vol. 60, pp. 3291-3297, 2013.

EXTRA FILES

COMMENTS