Occurrence of Panagrellus (Rhabditida: Panagrolaimidae) Nematodes in a Morphologically Aberrant Adult Specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae)

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

17
Reader(s)
55
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 1 (March 2016) > List of articles

Occurrence of Panagrellus (Rhabditida: Panagrolaimidae) Nematodes in a Morphologically Aberrant Adult Specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae)

MANUELA CAMEROTA / GIUSEPPE MAZZA / LYNN K. CARTA * / FRANCESCO PAOLI / GIULIA TORRINI / CLAUDIA BENVENUTI / BEATRICE CARLETTI / VALERIA FRANCARDI / PIO FEDERICO ROVERSI

Keywords : insect thorax defect, invasive species, nematode phoresy, physiological ecology, saprophagous nematode, sour paste
nematode.

Citation Information : Journal of Nematology. Volume 48, Issue 1, Pages 1-6, DOI: https://doi.org/10.21307/jofnem-2017-001

License : (CC BY 4.0)

Received Date : 15-June-2015 / Published Online: 21-July-2017

ARTICLE

ABSTRACT

An aberrant specimen of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) also known as red palm weevil (RPW),
the most economically important insect pest of palms in the world, was found among a batch of conspecifics reared for research purposes. A morphological analysis of this weevil revealed the presence of nematodes associated with a structured cuticle defect of the thorax. These nematodes were not able to be cultured, but were characterized by molecular analysis using 28S and 18S ribosomal DNA and shown to belong to the family Panagrolaimidae (Rhabditida), within a clade of Panagrellus. While most nematodes in the insect were juveniles, a single male adult was partially characterized by light microscopy. Morphometrics showed similarities to a species described from Germany. Excluding the entomopathogenic nematodes (EPN), only five other genera of entomophilic or saprophytic rhabditid nematodes are associated with this weevil. This is the first report of panagrolaimid nematodes associated with this invasive pest. Possible mechanisms of nematode-insect association are discussed.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Andrassy, I. 1984. Klasse nematoda. Berlin: Gustav Fisher Verlag. Bert, W., De Ley, I. T., Van Driessche, R., Segers, H., and De Ley, P. 2003. Baujardia mirabilis gen. n., sp. n. from pitcher plants and its phylogenetic position within Panagrolaimidae (Nematoda: Rhabditida). Nematology 5:405–420.
  2. Bownes, M. 1975. Adult deficiencies and duplications of head and thoracic structures resulting from microcautery of blastoderm stage Drosophila embryos. Journal of Embryology and Experimental Morphology 34:33–54.
  3. Ebrahimi, L., Niknam, G., and Lewis, E. E. 2011. Lethal and sublethal effects of Iranian isolates of Steinernema feltiae and Heterorhabditis bacteriophora on the Colorado potato beetle, Leptinotarsa decemlineata. BioControl 56:781–788.
  4. Esparza-Dıaz, G., Olguin, A., Carta, L. K., Skantar, A. M., and Villanueva, R. T. 2013. Detection of Rhynchophorus palmarum (Coleoptera: Curculionidae) and identification of associated nematodes in South Texas. Florida Entomologist 96:1513–1521.
  5. Felix, M., and Duveau, F. 2012. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae.BMC Biology 10:59.
  6. Ferris, H. 2009. The beer mat nematode, Panagrellus redivivus: A study of the connectedness of scientific discovery. Journal of Nematode Morphology and Systematics 12:19–25.
  7. Foucher, A., and Wilson, M. 2002. Development of a polymerase chain reaction-based denaturing gradient gel electrophoresis technique to study nematode species biodiversity using the 18s rDNA gene. Molecular Ecology Resources 2:45–48.
  8. Giblin-Davis, R. M., Faleiro, J. R., Jacas, J. A., Pe~na, J. E., and Vidyasagar, P. S. P. V. 2013. Biology and Management of the Red Palm Weevil, Rhynchophorus ferrugineus. Pp. 1–34 in J. E. Pe~na, ed. Potential
    invasive pests of agricultural crops. Wallingford, UK: CABI Invasive Series books. doi: 10.1079/9781845938291.0001.
  9. Goodey, J. B. 1963. Soil and freshwater nematodes. London: Methuen.
  10. Heindl-Mengert, H. 1956. Die Nematodenfauna im Schleimfluss lebender Laubba€ume in: SITZUNGBERICHTE der Physikalisch Medizinischen Soziet€at Erlangen. 77. Band-1954. Erlangen: Broschiert.
  11. Huelsenbeck, J. P., and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.
  12. Inghilesi, A. F., Mazza, G., Cervo, R., and Cini, A. 2015. A network of sex and competition: The promiscuous mating system of an invasive weevil. Current Zoology 61:85–97.
  13. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F.,Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.
  14. Massey, C. L. 1974. Biology and taxonomy of nematode parasites and associates of bark beetles in the United States. USDA Forest Service Agriculture Handbook No. 446, Washington, DC: U.S. Government Printing Office.
  15. Mastore, M., Arizza, V., Manachini, B., and Brivio, M. F. 2015. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta:Coleoptera) induced by the entomopathogenic nematode Steinernema
    carpocapsae (Nematoda: Rhabditida). Insect Science 22:748–760.
  16. Mazza, G., Francardi, V., Simoni, S., Benvenuti, C., Cervo, R., Faleiro, J. R., Llacer, E., Longo, S., Nannelli, R., Tarasco, E., and Roversi, P. F. 2014. An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus. Biological Control 77:83–92.
  17. Montagna, M., Chouaia, B., Mazza, G., Prosdocimi, E., Crotti, E., Mereghetti, V., Vacchini, V., Giorgi, A., De Biase, A., Longo, S., Cervo, R., Lozzia, G. C., Alma, A., Bandi, C., and Daffonchio, D. 2015.
  18. Effects of the diet on the microbiota of the Red Palm Weevil (Coleoptera:Dryophthoridae). PLoS One 10:e0117439.
  19. Nadler, S. A., and Hudspeth, D. S. S. 1998. Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Sacernentea): Implications for morphological evolution and classification. Molecular Phylogenetics
    and Evolution 10:221–236.
  20. Paoli, F., Dallai, R., Cristofaro, M., Arnone, S., Francardi, V., and Roversi, P. F. 2014. Morphology of the male reproductive system, sperm ultrastructure and g-irradiation of the red palm weevil Rhynchophorus
    ferrugineus Oliv. (Coleoptera: Dryophthoridae). Tissue Cell 46:274–285.
  21. Poinar, G. 1972. Nematodes as facultative parasites of insects. Annual Review of Entomology 17:103–122.
    Stock, S. P., and Nadler, S. A. 2006. Morphological and molecular characterisation of Panagrellus spp. (Cephalobina: Panagrolaimidae):Taxonomic status and phylogenetic relationships. Nematology
    8:921–938.
  22. Sudhaus, W. 2008. Evolution of insect parasitism in rhabditid and diplogastrid nematodes. Pp. 143–161 in S. E. Makarov, and R. N.Dimitrijevic, eds. Advances in arachnology and developmental biology. Belgrade, Serbia: Institute of Zoology.
  23. Troccoli, A., Oreste,M., Tarasco, E., Fanelli, E., and De Luca, F. 2015. Mononchoides macrospiculum n. sp. (Nematoda: Neodiplogastridae) and Teratorhabditis synpapillata Sudhaus, 1985 (Nematoda: Rhabditidae):
    Nematode associates of Rhynchophorus ferrugineus (Oliver) (Coleoptera:Curculiionidae) in Italy. Nematology 17:953–966.
  24. van Megen, H., van den Elsen, S., Holterman, M., Karssen, G., Mooyman, P., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. 2009. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950.

EXTRA FILES

COMMENTS