Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 1 (March 2016) > List of articles

Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon


Keywords : beneficial bacteria, biological control, Citrullus lanatus var. lanatus, DAPG, Fusarium oxysporum, Fusariumwilt, management,
Meloidogyne incognita
, Pseudomonas fluorescens, root-knot nematode, watermelon

Citation Information : Journal of Nematology. Volume 48, Issue 1, Pages 43-53, DOI:

License : (CC BY 4.0)

Received Date : 28-September-2015 / Published Online: 21-July-2017



Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R, and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogyne incognita (root-knot nematode: RKN) and Fusarium oxysporum f. sp. niveum (Fon). In a greenhouse trial,Wayne 1R root dip suppressed numbers of RKN eggs per gram root on ‘Charleston Gray’ watermelon by 28.9%. However, in studies focused on ‘Sugar Baby’ watermelon, which is commercially grown in Maryland, a Wayne 1R root dip did not inhibit RKN reproduction or plant death caused by Fon. When all three isolates were applied as seed coats, plant stand in the greenhouse was reduced up to 60% in treatments that included Fon 6 P. fluorescens, and eggs per gram root did not differ among treatments. In a microplot trial with Clinto 1R and Wayne 1R root dips, inoculation with P. fluorescens and/or Fon resulted in shorter vine lengths than treatment with either P. fluorescens isolate plus RKN. Root weights, galling indices, eggs per gram root, and secondstage juvenile (J2) numbers in soil were similar among all RKN-inoculated treatments, and fruit production was not affected by treatment. Plant death was high in all treatments. These studies demonstrated that the tested P. fluorescens isolates resulted in some inhibition of vine growth in the field, and were not effective for enhancing plant vigor or suppressing RKN or Fon on watermelon.

Content not available PDF Share



  1. Bakker, P. A. H. M., Pieterse, C. M. J., and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243.
  2. Bergsma-Vlami, M., Prins, M. E., and Raaijmakers, J. M. 2005. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiology Ecology 52:59–69.
  3. Bonsall, R. F., Weller, D. M., and Thomashow, L. S. 1997. Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology 63:951–955.
  4. Brazelton, J. N., Pfeufer, E. E., Sweat, T. A., McSpadden Gardener, B. B., and Coenen, C. 2008. 2,4-Diacetylphloroglucinol alters plant root development. Molecular Plant-Microbe Interactions 21:1349–1358.
  5. Cronin, D., Moe¨nne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., and O’Gara, F. 1997. Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Applied and Environmental Microbiology 63:1357–1361.
  6. Daulton, R. A. C., and Nusbaum, C. J. 1961. The effect of soil temperature on the survival of the root-knot nematodes Meloidogyne javanica and M. hapla. Nematologica 6:280–294.
  7. De La Fuente, L., Landa, B. B., and Weller, D. M. 2006. Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96:751–762.
  8. Delany, I. R., Walsh, U. F., Ross, I., Fenton, A. M., Corkery, D. M., and O’Gara, F. 2001. Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4- 
    diacetylphloroglucinol. Plant and Soil 232:195–205.
  9. De Leij, F. A. A. M., Dixon-Hardy, J. E., and Lynch, J. M. 2002. Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biology and Fertility of Soils 35:114–121.
  10. De Souza, J. T., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V., and Raaijmakers, J. M. 2003. Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975.
  11. Iavicoli, A., Boutet, E., Buchala, A., andMetraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe 
    Interactions 16:851–858.
  12. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J.,Burger, U., Wirthner, P., Haas, D., and Defago, G. 1992. Suppression of root diseases by Pseudomons fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interactions 5:4–13.
  13. Kwak, Y.-S., Bakker, P. A. H. M., Glandorf, D. C. M., Rice, J. T., Paulitz, T. C., and Weller, D. M. 2009. Diversity, virulence and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington State. Phytopathology 99:472–479.
  14. Landa, B. B., Mavrodi, O. V., Raaijmakers, J. M., McSpadden Gardener, B. B., Thomashow, L. S., and Weller, D. M. 2002. Differential ability of genotypes of 2,4-diacetylphloroglucinolproducing Pseudomonas fluorescens strains to colonize the roots of pea plants. Applied and Environmental Microbiology 68:3226–3237.
  15. Lim, C. K., Hassan, K. A., Tetu, S. G., Loper, J. E., and Paulsen, I. T. 2012. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS One 7:1–18.
  16. Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., and Samiyappan, R. 2010. Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control 54:83–89.
  17. Maurhofer, M., Keel, C., Haas, D., and Defago, G. 1995. Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathology 44:40–50.
  18. Mazurier, S., Corberand, T., Lemanceau, P., and Raaijmakers, J. M. 2009. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. The ISME Journal 3:977–991.
  19. McSpadden Gardener, B. B. 2007. Diversity and ecology of biocontrol Pseudomonas in agricultural systems. Phytopathology 97:221– 226.
  20. McSpadden Gardener, B. B., Gutierrez, L. J., Joshi, R., Edema, R., and Lutton, E. 2005. Distribution and biocontrol potential of phlD+ pseudomonads in corn and soybean fields. Phytopathology 95:715–724.
  21. McSpadden Gardener, B. B., Mavrodi, D. V., Thomashow, L. S., and Weller, D. M. 2001. A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinolproducing
    bacteria. Phytopathology 91:44–54.
  22. McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S., and Weller, D. M. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Applied and Environmental Microbiology 66:1939–1946.
  23. McSpadden Gardener, B. B., and Weller, D. M. 2001. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Applied and Environmental Microbiology 67:4414–4425.
  24. Meyer, S. L. F., Halbrendt, J. M., Carta, L. K., Skantar, A. M., Liu, T., Abdelnabby, H. M. E., and Vinyard, B. T. 2009. Toxicity of 2,4- diacetylphloroglucinol (DAPG) to plant-parasitic and bacterialfeeding nematodes. Journal of Nematology 41:274–280.
  25. Meyer, S. L. F., Lakshman, D. K., Zasada, I. A., Vinyard, B. T., and Chitwood, D. J. 2008. Phytotoxicity of clove oil to vegetable crop seedlings and nematotoxicity to root-knot nematodes. HortTechnology 18:631–638.
  26. Neidig, N., Paul, R. J., Scheu, S., and Jousset, A. 2011. Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex nontrophic interactions with bacterivorous nematodes. Microbial Ecology 61:853–859.
  27. Netzer, D. 1976. Physiological races and soil population level of Fusarium wilt of watermelon. Phytoparasitica 4:131–136.
  28. Raudales, R. E., Stone, E., and McSpadden Gardener, B. B. 2009. Seed treatment with 2,4-diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of
    nutrient uptake. Phytopathology 99:506–511.
  29. SAS Institute Inc. 2015. SAS/STAT 14.1 user’s guide. Cary, NC: SAS Institute.
  30. Saikia, R., Varghese, S., Singh, B. P., and Arora, D. K. 2009. Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea. Microbiological Research 164:365–373.
  31. Schouten, A., van de Berg, G., Edel-Hermann, V., Steinberg, C., Gautheron, N., Alabouvette, C., de Vos, C. H. R., Lemanceau, P., and Raaijmakers, J. M. 2004. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions 17:1201–1211.
  32. Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N., and Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. Bio-Control 59:345–355.
  33. Siddiqui, I. A., Haas, D., and Heeb, S. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology 71:5646–5649.
  34. Siddiqui, I. A., and Shaukat, S. S. 2002. Rhizobacteria-mediated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica. Journal of Phytopathology 150:469–473.
  35. Siddiqui, I. A., and Shaukat, S. S. 2003a. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: Importance of bacterial secondary metabolite, 2,4-diacetylphloroglucinol. Soil Biology and Biochemistry 35:1615–1623.
  36. Siddiqui, I. A., and Shaukat, S. S. 2003b. Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. Journal of Phytopathology 151:231–238.
  37. Siddiqui, I. A., and Shaukat, S. S. 2003c. Non-pathogenic Fusarium solani represses the biosynthesis of nematicidal compounds in vitro and reduces the biocontrol of Meloidogyne javanica by Pseudomonas 
    fluorescens in tomato. Letters in Applied Microbiology 37:109–114.
  38. Siddiqui, I. A., and Shaukat, S. S. 2004. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. Journal of Phytopathology 152:48–54.
  39. Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H., and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology 22:641–650.
  40. Thies, J. A., Ariss, J. J., Hassell, R. L., Olson, S., Kousik, C. S., and Levi, A. 2010. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease 94:1195–1199.
  41. Timper, P., Kone, D., Yin, J., Ji, P., and McSpadden Gardener, B. B. 2009. Evaluation of an antibiotic-producing strain of Pseudomonas fluorescens for suppression of plant-parasitic nematodes. Journal of 
    Nematology 41:234–240.
  42. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250–256. Weller, D. M., Landa, B. B., Mavrodi, O. V., Schroeder, K. L., De La Fuente, L., Blouin Bankhead, S., Allende Molar, R., Bonsall, R. F.,
  43. Mavrodi, D. V., and Thomashow, L. S. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology 9:4–20.
  44. Weller, D. M., Mavrodi, D. V., Van Pelt, J. A., Pieterse, C. M. J., Van Loon, L. C., and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-
    diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412.
  45. Zhou, T.-T., Li, C.-Y., Chen, D., Wu, K., Shen, Q.-R., and Shen, B. 2014. phlF- mutant of Pseudomonas fluorescens J2 improved 2,4-DAPG biosynthesis and biocontrol efficacy against tomato bacterial wilt. Biological Control 78:1–8.
  46. Zhou, X. G., and Everts, K. L. 2006. Suppression of Fusarium wilt of watermelon enhanced by hairy vetch green manure and partial cultivar resistance. Plant Health Progress doi:10.1094/PHP-2006-0405-01-RS.