Nematode Fauna of Tropical Rainforest in Brazil: A Descriptive and Seasonal Approach

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

29
Reader(s)
71
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 2 (June 2016) > List of articles

Nematode Fauna of Tropical Rainforest in Brazil: A Descriptive and Seasonal Approach

MERCIA S. O. CARDOSO / ELVIRA M. R. PEDROSA * / HOWARD FERRIS / MARIO M. ROLIM / LAMARTINE S. C. OLIVEIRA

Keywords : ecological indices, ecology, metabolic footprints, predator–prey interactions, soil physical properties.

Citation Information : Journal of Nematology. Volume 48, Issue 2, Pages 116-125, DOI: https://doi.org/10.21307/jofnem-2017-017

License : (CC BY 4.0)

Received Date : 28-September-2015 / Published Online: 24-July-2017

ARTICLE

ABSTRACT

Studies of nematode assemblages in natural ecosystems can contribute to better understanding of the occurrence,
relevance, and ecology of plant-parasitic and other soil nematodes. Nematode assemblages and environmental parameters (organic matter, water content (WC), bulk density (BD), total porosity (Po), soil respiration, and soil texture) were investigated in two seasons (rainy and dry) in two forest areas of the Zona da Mata, Pernambuco State. The aim of our research was to evaluate the heterogeneity between two locations and seasons in the Brazilian Atlantic Forest. Structure and composition of the nematode assemblages differed between areas and across time. Rhabditidae dominated the rainy season in both forest soils. Rarefaction curves (RC) suggest that sampling to detect more nematode taxa should be more intensive in the rainy season. The forest soils have complex, stable soil food webs with high connectance and decomposition channels dominated by bacteria. The predator–prey relationships were not affected by changes in soil properties that fluctuate with time.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Alvares, C. A., Stape, J. L., Sentelhas, P. C., Goncxalves, J. L. M., and Sparovek, G. 2013. K€oppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711–728.
  2. Bakonyi, G., and Nagy, P. 2000. Temperature- and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland patterns and mechanisms. Global Change Biology 6:697–707.
  3. Berg, B., and McClaugherty, C. 2014. Plant litter: Decomposition, humus formation, carbon sequestration. Berlin: Springer-Verlag.
  4. Biederman, L. A., Boutton, T. W., and Whisenant, S. G. 2008. Nematode community development early in ecological restoration: The role of organic amendments. Soil Biology and Biochemistry 40:2366–2374.
  5. Bongers, T. 1990. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19.
  6. Bongers, T., and Bongers, M. 1998. Functional diversity of nematodes. Applied Soil Ecology 10:239–251.
  7. Bongers, T., and Ferris, H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution 14:224–228.
  8. Briar, S. S., Culman, S. W., Young-Mathews, A., Jackson, L. E., and Ferris, H. 2012. Nematode community responses to a moisture Seasonal Fauna of Brazilian Rainforests: Cardoso et al. 123 gradient and grazing along a restored riparian corridor. European Journal of Soil Biology 50:32–28.
  9. Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., and Scheu, S.2013. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology and Biochemistry 62:36–45.
  10. Chung, H., Zak, D. R., Reich, P. B., and Ellsworth, D. S. 2007. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology 13:980–989.
  11. Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117–143.
  12. Colwell, R. 2009. EstimateS: Statistical estimation of species richness and shared species from samples, version 8.2. http://viceroy.eeb. uconn.edu/EstimateS.
  13. Culman, S. W., DuPont, S. T., Glover, J. D., Buckley, D. H., Fick, G. W., Ferris, H., and Crews, T. E. 2010. Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agriculture. Ecosystems and Environment 137:13–24.
  14. Dilly, O. 2006. Soil microbial activity. Pp. 114–116 in J. Bloem, D. W. Hopkins, and A. Benedetti, eds. Microbiological methods for assessing soil quality. Wallingford: CAB International.
  15. Donagema,G. K.,deCampos,D. V. B.,Calderano, S.B.,Teixeira,W.G., and Viana, J. H. M. 2011. Manual de metodos de analise de solo. Rio de Janeiro: Embrapa Solos.
  16. Eisenhauer, N., Migunova, V. D., Ackermann, M., Ruess, L., and Scheu, S. 2011. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland. PLoS One 6:e24087.
  17. Ferris,H. 2010a. Formand function:Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 46:97–104.
  18. Ferris, H. 2010b. Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology 42:63–67.
  19. Ferris, H., and Bongers, T. 2006. Nematode indicators of organic enrichment. Journal of Nematology 38:3–12.
  20. Ferris, H., Bongers, T., and de Goede, R. G. M. 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology 18:13–29.
  21. Ferris, H., Bongers, T., and de Goede, R. 2004. Nematode faunal analyses to assess food web enrichment and connectance. Pp. 503–510 in R. C. Cook, and D. J. Hunt, eds. Proceedings of the Fourth International
    Congress of Nematology. Nematology Monographs and Perspectives 2. Leiden: Brill.
  22. Ferris, H., Sanchez-Moreno, S., and Brennan, E. B. 2012. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology 61:16–25.
  23. Fu, S., Ferris, H., Brown, D., and Plant, R. 2005. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry 37:1979–1987.
  24. Green, J. J., Dawson, L. A., Proctor, J., Duff, E. I., and Elston, D. A. 2005. Fine root dynamics in a tropical rain forest is influenced by rainfall. Plant and Soil 276:23–32.
  25. Griffiths, B. S. 1994. Soil nutrient flow. Pp. 65–91 in J. F. Darbyshire, ed. Soil protozoa. Wallingford: CAB International.
  26. Grisi, B. M. 1978. Metodo quımico de medicx~ao da respiracx~ao edafica: Alguns aspectos tecnicos. Ci^encia e Cultura 30:82–88.
  27. Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaentologia Eletronica 4:1–9.
  28. Hendrix, P. F., Parmelee, R. W., Crossley, D. A., Coleman, D. C., Odum, E. P., and Groffman, P. M. 1986. Detritus food webs in conventional and no-tillage agroecosystems. Bioscience 36:374–380.
  29. Holtkamp, R., Kardol, P., van der Wal, A., Dekker, S. C., van der Putten, W. H., and de Ruiter, P. C. 2008. Soil food web structure during ecosystem development after land abandonment. Applied Soil Ecology 39:23–34.
  30. Jenkins, W. R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter 48:692–695.
  31. Jordan, D., Ponder, F., Jr., and Hubbard, V. C. 2003. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Applied Soil Ecology 23:33–41.
  32. Klein, V. A., and Libardi, P. L. 2002. Densidade e distribuicx~ao do di^ametro dos poros de um latossolo vermelho, sob diferentes sistemas de uso e manejo. Revista Brasileira de Ci^encia do Solo 26:857–867.
  33. Leff, J.W., Nemergut, D. R., Grandy, A. S., O’Neill, S. P.,Wickings, K., Townsend, A. R., and Cleveland, C. C. 2012. The effects of soil bacterial community structure on decomposition in a tropical rain forest. Ecosystems
    15:284–298.
  34. Legendre, P., and Legendre, L. F. J. 1998. Numerical Ecology, 2nd ed. Amsterdam: Elsevier.
  35. Liang, W., Li, Q., Jiang, Y., and Neher, D. A. 2005. Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China. Applied Soil Ecology 29:185–192.
  36. Mai, W. F., Mullin, P. G., Lyon, H. H., and Loeffler, K. 1996. Plantparasitic nematodes: A pictorial key to genera, 5th ed. Ithaca: Cornell University Press.
  37. McGuire, K. L., Fierer, N., Bateman, C., Treseder, K. K., and Turner, B. L. 2012. Fungal community composition in neotropical rain forests: The influence of tree diversity and precipitation. Microbial Ecology 63:804–812.
  38. McSorley, R. 2003. Adaptations of nematodes to environmental extremes. Florida Entomologist 86:138–142.
  39. Metcalfe, D. B., Meir, P., Aragao, L. E. O. C., da Costa, A. C. L., Braga, A. P., Goncalves, P. H. L., Silva, J. D., de Almeida, S. S., Dawson, L. A., Malhi, Y., and Williams, M. 2008. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil 311:189–199.
  40. Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., and Gascon, C. 2011. Global biodiversity conservation: The critical role of hotspots. Pp. 3–22 in F. E. Zachos and J. C. Habel, eds. Biodiversity hotspots. Berlin: Springer-Verlag.
  41. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A., and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.
  42. Neher, D. A. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology 48:371–394.
  43. Porazinska, D. L., Giblin-Davis, R. M., Powers, T. O., and Thomas, W. K. 2012. Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One 7:e44641.
  44. Powers, T.O.,Neher,D.A., Mullin, P., Esquivel,A., Giblin-Davis,R.M., Kanzaki, N., Stock, S. P., Mora, M.M., and Uribe-Lorio, L. 2009. Tropical nematode diversity: Vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Molecular Ecology 18: 985–996.
  45. Pupin, B., Freddi, O. S., and Nahas, E. 2009. Microbial alterations of the soil influenced by induced compaction. Revista Brasileira de Ci^encia do Solo 33:1207–1213.
  46. Rayner, A. D. M., and Boddy, L. 1988. Fungal decomposition of wood: Its biology and ecology. Chichester: John Wiley.
  47. Rossouw, J., van Rensburg, L., Claassens, S., and Jansen van Rensburg, P. J. 2008.Nematodes as indicators of ecosystemdevelopment during platinum mine tailings reclamation. Environmentalist 28:99–107.
  48. Ruess, L., and Ferris, H. 2004. Decomposition pathways and successional changes. Pp. 547–566 in R. C. Cook, and D. J. Hunt, eds. Proceedings of the Fourth International Congress of Nematology.
    Nematology Monographs and Perspectives 2. Leiden: Brill.
  49. Sanchez-Moreno, S., Ferris, H., Young-Mathews, A., Culman, S. W.,and Jackson, L. E. 2011. Abundance, diversity and connectance of soilfood web channels along environmental gradients in an agricultural landscape. Soil Biology and Biochemistry 43:2374–2383.
  50. Sommer, R. J., and Ogawa, A. 2013. The genome of Pristionchus pacificus and the evolution of parasitism. Pp. 1–14 in M. W. Kennedy and W. Harnett, eds. Parasitic nematodes: Molecular biology, biochemistry and immunology. Wallingford: CAB International.
  51. StatSoft 2010. Statistica (data analysis software system), version 10. http://www.statsoft.com
  52. Stirling, G. R., and Lodge, G. M. 2005. A survey of Australian temperate pastures in summer and winter rainfall zones: Soil nematodes, chemical, and biochemical properties. Australian Journal of Soil Research 43:887–904.
  53. Stork, N. E. 1996. Tropical forest dynamics: The faunal components. Pp. 1–20 in D. S. Edwards, W. E. Boot, and S. C. Choy, eds. Tropical rainforest research—current issues. Dordrecht: Kluwer Academic Publishers.
  54. Tarjan, A. C., Esser, R. P., and Chang, S. L. 1977. An illustrated key to nematodes found in fresh water. Journal of the Water Pollution Control Federation 49:2318–2337.
  55. Teillet, A., Dybal, K., Kerry, B. R., Miller, A. J., Curtis, R. H. C., and  Hedden, P. 2013. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PloS One 8:e61259.
  56. Wharton, D. A. 2010. Nematodes survival strategies. Pp. 389–391 in D. L. Lee, ed. The biology of nematodes. London: Taylor & Francis Group.
  57. Yeates, G.W., Bongers, T., de Goede, R. G. M., Freckman, D.W., and Georgieva, S. S. 1993. Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25:315–331.
  58. Yeomans, J. C., and Bremner, J. M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis 13:1467–1476.

EXTRA FILES

COMMENTS