The Effects of Nutrient Concentration, Addition of Thickeners, and Agitation Speed on Liquid Fermentation of Steinernema feltiae

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 2 (June 2016) > List of articles

The Effects of Nutrient Concentration, Addition of Thickeners, and Agitation Speed on Liquid Fermentation of Steinernema feltiae

LUIS G. LEITE * / DAVID I. SHAPIRO-ILAN * / SELCUK HAZIR / MARK A. JACKSON

Keywords : biocontrol, entomopathogenic nematode, in vitro production, liquid fermentation.

Citation Information : Journal of Nematology. Volume 48, Issue 2, Pages 126-133, DOI: https://doi.org/10.21307/jofnem-2017-018

License : (CC BY 4.0)

Received Date : 09-November-2015 / Published Online: 24-July-2017

ARTICLE

ABSTRACT

Entomopathogenic nematode production in liquid fermentation still requires improvements to maximize efficiency, yield, and nematode quality. Therefore, this study was aimed at developing a more suitable liquid medium for mass production of 
Steinernema feltiae, by assessing the effects of nutrient concentration, thickeners (primarily agar), and agitation speed on infective juvenile (IJ) yield. Base medium (BM) contained yeast extract (2.3%), egg yolk (1.25%), NaCl (0.5%), and corn oil (4%). All media were inoculated with Xenorhabdus bovienii, and 2 d later, with 2-d-old S. feltiae juveniles. For the nutrient concentration experiment, we evaluated the base medium versus a modified base medium containing all the components, but with 33 concentrations of yeast extract (6.9%), egg yolk (3.75%), and corn oil (12%). The nematodes and bacteria were cultured in 150-ml Erlenmeyer flasks containing 50 ml of liquid medium at (258C) and 180 rpm on a rotary shaker incubator. To assess the effect of thickeners, IJs were inoculated in BM with agar (0.2%), carrageen (0.2%), and carboxymethyl cellulose (0.2% and 0.5%). The addition of 33 more nutrients relative to the BM resulted in a significantly lower yield of nematodes. For agar and agitation speed experiments, five levels of agar in the BM (0%, 0.2%, 0.4%, 0.6%, and 0.8% agar) and two agitation speeds (180 and 280 rpm) were evaluated for production. Increasing agitation speed from 180 to 280 rpm and higher levels of agar in the medium (. 0.2%) significantly increased the yield of bacteria. At the lower agitation speed, media amended with 0.4% and 0.6% agar produced higher nematode yields compared to media without agar. Media with 0.2% and 0.8% agar resulted in intermediate levels of nematode production. At the higher agitation speed, media supplemented with 0.8% agar resulted in the lowest yield of nematodes when compared to the other media tested.Results indicated that increasing nutrient concentration levels was detrimental to nematode production. Also, media containing agar
(0.4% and 0.6%) increased nematode yields when cultures were grown at low agitation speed. When IJs were used as the inoculum,0.2% agar also enhanced recovery and nematode yield at the higher agitation speed.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Abu Hatab, M., and Gaugler, R. 1999. Lipids of in vivo and in vitro cultured Heterorhabditis bacteriophora. Biological Control 15:113–118.
  2. Akhurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp, bacteria symbiotically associated with insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology 121:303–309.
  3. Buecher, E. J., Hansen, E. L., and Yarwood, E. A. 1970. Growth of nematodes in defined medium containing hemin and supplemented with commercially available proteins. Nematologica 16:403–409.
  4. Burman, M., and Pye, A. E. 1980. Neoplectana carpocapsae: respiration of infective juveniles. Nematologica 26:214–219.
  5. Chavarrıa-Hernandez,N., Perez-Perez,N. C.,Chavarrıa-Hernandez, J.C., Barahona-Perez, L. F., and Rodrıguez-Hernandez, A. I. 2014. Specific oxygen uptake of the entomopathogenic nematode, Steinernema carpocapsae CABA01, in submerged culture. Biocontrol Science and Technology 24(7):723–733.
  6. Chavarrıa-Hernandez, N. C., and Torre, M. 2001. Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture. Biotechnology Letters 23:311–315.
  7. Cho, C. H., Whang, K. S., Gaugler, R., and Yoo, S. K. 2011. Submerged monoxenic culture medium development for Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens:Protein sources. Journal of Microbiology and Biotechnology 21(8):869–873.
  8. Cochran, W. G., and Cox, G. M. 1957. Experimental designs, 2nd ed. New York: John Wiley and Sons, 611 pp.
  9. Ehlers, R. U. 2001. Mass production of entomopathogenic nematodes for plant protection Applied Microbiology and Biotechnology. 56:623–633.
  10. Ehlers, R. U., Niemann, I., Hollmer, S., Strauch, O., Jende, D., Shanmugasundaram, M., Mehta, U. K., Easwaramoorthy, S. K., and Burnell, A. 2000. Mass production potential of the bacto-helminthic biocontrol complex Heterorhabditis indica-Photorhabdus luminescens. Biocontrol Science and Technology 10:607–616.
  11. Ehlers, R. U., and Shapiro-Ilan, D. I. 2005. Mass production. Pp. 65–78 in P. S. Grewal, R. U. Ehlers, and D. I. Shapiro-Ilan, eds. Nematodes as biocontrol agents. Cambridge: CABI Publishing.
  12. Fiddy, C., and Trinci, P. J. 1975. Kinetics and morphology of glucoselimited cultures of moulds grown in a chemostat and on solid media. Archives of Microbiology 103:191–197.
  13. Friedman, M. J. 1990. Commercial production and development. Pp. 153–172 in R. Gaugler and H. K. Kaya, eds. Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC.
  14. Gaugler, R. 1997. Alternative paradigms for commercializing biopesticides. Phytoparasitica 25:179–182.
  15. Gaugler, R., and Han, R. 2002. Production technology. Pp. 289–310 in E. Gaugler, ed. Entomopathogenic nematology. New York: CABI Publishing.
  16. Gbewonyo, R., Rohrer, S., and Buckland, B. 1997. Bioreactor cultivation of the nematode Caenorhabditis elegans : Large scale production of biologically active drug receptors for pharmaceutical research. 
    Biotechnology and Genetic Engineering Reviews 14:37–49..
  17. Giese, H., Azizan, A., K€ummel, A., Liao, A., Peter, C. P., Fonseca, J. A., Hermann, R., Duarte, T. M., and B€uches, J. 2013. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Biotechnology and Bioengineering 111:295–308.
  18. Gil, G. H., Choo, H. Y., and Gaugler, R. 2002. Enhancement of entomopathogenic nematode production in vitro liquid culture of Heterorhabditis bacteriophora by fed-batch culture with glucose supplementation. Applied Microbiology and Biotechnology 58:751–755.
  19. Han, R. C. 1996. The effect of inoculum size on yield of Steinernema carpocapsae and Heterorhabditis bacteriophora in liquid culture. Nematologica 42:546–553.
  20. Hankinson, O. 1974. Mutants of the pentose phosphate pathway in Aspergillus nidulans. Journal of Bacteriology 117:1121–1130.
  21. Hassane, S. O. S., Farah, A., Satrani, B., Ghanmi, M., Chahmi, N., Chahmi, N., Soidrow, S. H., and Chaouch, A. 2012. Chemical composition and antimicrobial activity of comorian Ocimum canum essential oil harvested in the region of Maweni Dimani-Grande Comoros. Pp. 443–452 in M. G. Bhowon, S. Jhaumeer-Laulloo, H. L. K. Wah, and P. Ramasami, eds. Chemistry for sustainable development. London:Springer.
  22. Hieb, W. F., and Rothstein, M. 1968. Sterol requirements for reproduction of a free-living nematode. Science 160:778–779.
  23. Hieb, W. F., Stokstad, E. L. R., and Rothstein, M. 1970. Heme requirement for reproduction of a free-living nematode. Science 168:143–144.
  24. Hirao, A., and Ehlers, R. U. 2009. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda:
    Rhabditida). Applied Microbiology and Biotechnology 85:507–515.
  25. Jeffke, T., Jende, D., Matje, C., Ehlers, R. U., and Berthe-Corti, L. 2000. Growth of Photorhabdus luminescens in batch and glucose fed batch culture. Applied Microbiology and Biotechnology 54:326–330.
  26. Jess, S., Schweizzer, H., and Kilpatrick, M. 2005. Mushroom Applications. Pp. 191–213 in P. S. Grewal, R. U. Ehlers, and D. I. Shapiro-Ilan, eds. Nematodes as biocontrol agents. Oxfordshire: CABI Publishing.
  27. Kaya, H., and Stock, S. P. 1997. Techniques in insect nematology. Pp. 281–324 in L. A. Lacey, ed. Manual of techniques in insect pathology. CA: Academic Press.
  28. Kim, T. W., Kim, T. H., Yasunaga-Aoki, C., and Yu, Y. M. 2014. Mass production of entomopathogenic nematode, Heterorhabditits megidis by using micorosparger of gandong strain. Journal of the Faculty of
    Agriculture, Kyushu University 59(2):283–288.
  29. Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., and Goettel, M. S. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132:1–41.
  30. Leite, L. G., Alves, S. B., Batista Filho, A., and Roberts, D. W. 2003. Effect of salts, vitamins, sugars and nitrogen sources on the growth of three genera of Entomophthorales: Batkoa, Furia, and Neozygites. Mycological Research 107:1–7.
  31. Lewis, E. E., and Clarke, D. J. 2012. Nematode parasites and entomopathogens. Pp. 395–424 in F. E. Vega and H. K. Kaya, eds. Insect pathology. San Diego, CA: Academic Press.
  32. Lunau, S., Stoessel, S., Schmidt-Peisker, A. J., and Ehlers, R. U. 1993. Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica 39:385–399.
  33. Mascarin, G. M., Jackson, M. A., Kobori, N. N., Behle, R. W., Dunlap, C. A., and Delalibera Junior, I. 2015. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores. Applied Microbiology and Biotechnology 99:6653–6665.
  34. Neves, J. M., Teixeira, J. A., Simoes, N., and Mota, M. 2001. Effect of air-flow rate on yield of Steinernema carpocapsae Az in liquid culture in an external loop airlift bioreactor. Biotechnology Bioengineering 73:369–373.
  35. Payton, M., Mccullough, W., and Roberts, C. F. 1976. Agar as a carbon source and its effect on the utilization of other carbon sources by acetate non-utilizing (acu) mutants of Aspergillus nidulans. Journal of General Microbiology 94:228–233.
  36. Ryan, F. J. 1950. Selected methods of Neurospora genetics. Methods in Medical Research 3:52–53.
  37. Shapiro-Ilan, D., and Gaugler, R. 2002. Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology and Biotechnology 28:137–146.
  38. Shapiro-Ilan, D., Han, R., and Dolinksi, C. 2012. Entomopathogenic nematode production and application technology. Journal of Nematology 44(2):206–217.
  39. Shapiro-Ilan, D., Han, R., and Qiu, X. 2014. Production of entomopathogenic nematodes. Pp. 321–355 in J. A. Morales-Ramos, M.G. Rojas, and D. I. Shapiro-Ilan, eds. Mass production of beneficial organisms. Oxford: Elsevier.
  40. Southwood, T. R. E. 1978. Ecological methods, 2nd ed. New York: Chapman and Hall, 524 pp.
  41. Stock, P. 2015. Diversity, Biology and evolutionary relationships. Pp. 3–27 in R. Campos-Herrera, ed. Nematode pathogenesis of insects and other pests. New York: Springer.
  42. Stock, S. P., and Goodrich-Blaiir, H. 2012. Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. Pp. 373–426 in L. Lacey, ed. Manual of techniques in invertebrate pathology. New York: Academic Press.
  43. Strauch, O., and Ehlers, R. 1998. Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Applied Microbiology and Biotechnology 50:369–374.
  44. Strauch, O., and Ehlers, R. U. 2000. Influence of the aeration rate on the yield of the biocontrol nematode Heterorhabditis megidis in liquid culture. Applied Microbiology and Biotechnology 54:9–13.
  45. Tomalak, M., Piggott, S., and Jagdale, G. B. 2005. Glasshouse Application. Pp. 147–166 in P. S. Grewal, R. U. Ehlers, and D. I. Shapiro- Ilan, eds. Nematodes as biocontrol agents. Oxfordshire: CABI Publishing.
  46. Vanfleteren, J. R. 1974. Nematode growth factor. Nature 248:255–257.
  47. Yoo, S. K., Brown, I., Cohen, N., and Gaugler, R. 2001. Medium concentration influencing growth of the entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus 
    luminescens. Journal of Microbiology and Biotechnology 11:644–648.
  48. Yoo, S., Brown, I., and Gaugler, R. 2000. Liquid media development for Heterorhabditis bacteriophora: Lipid source and concentration. Applied Microbiology and Biotechnology 54:759–763.

EXTRA FILES

COMMENTS