First Report of Heterorhabditis amazonensis from Venezuela and Characterization of Three Populations


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 3 (September 2016) > List of articles

First Report of Heterorhabditis amazonensis from Venezuela and Characterization of Three Populations


Keywords : biogeography, entomopathogenic nematode, Heterorhabditis amazonensis, morphology, Venezuela

Citation Information : Journal of Nematology. Volume 48, Issue 3, Pages 139-147, DOI:

License : (CC BY 4.0)

Published Online: 21-July-2017



During a survey in western Venezuela in 2011, three new populations of Heterorhabditis amazonensis (LPV081, LPV156, and LPV498) were isolated. Some differences were found in terms of morphometry compared with the original description; however, the distance from the anterior end to the excretory pore is the most variable character; significantly shorter in all infective juveniles and in other developmental stages depending on the population. According to a Principal Component Analysis, LPV498 possesses more differences in morphometric characteristics and can be separated from the other two. Those intraspecific differences could be attributed to the geographic origin of the nematode. Molecular studies of ITS regions demonstrated that the sequences of the Venezuelan strains were identical to those of the type species originally isolated in the Brazilian Amazonian forest. This is an interesting fact because in several studies on heterorhabditids, intraspecific variability has been recorded. Herein, we present the first report of H. amazonensis in Venezuela and the characterization of three populations of this species.

Content not available PDF Share



  1. Adams, B. J., Peat, S. M., and Dillman, A. R. 2007. Phylogeny and evolution. Pp. 693–733 in K. B. Nguyen, D. J. Hunt, eds. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. The Netherlands: Brill.
  2. Andalo, V., Moreira, G. F., and Moino, A., Jr. 2009. Studies of two new populations of Heterorhabditis amazonensis (Rhabditida: Heterorhabditidae). Nematropica 39:199–211.
  3. Andalo, V., Nguyen, K. B., and Moino, A., Jr. 2006. Heterorhabditis amazonensis n. sp. (Rhabditida: Heterorhabditidae) from Amazonas, Brazil. Nematology 8:853–867.
  4. Bedding, R. A., and Akhurst, R. J. 1975. A simple technique for the detection of insect parasitic rhabditid in soil. Nematologica 21:109– 110.
  5. Burnell, A., and Stock, S. P. 2000. Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology 2:31–42.
  6. Courtney,W. D., Polley, D., and Miller, V. L. 1955. TAF, an improved fixative in nematode technique. Plant Disease Reporter 39:570–571.
  7. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.
  8. Huelsenbeck, J. P., and Ronquist, F. 2001. MR-BAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755.
  9. Li, X. Y., Liu, Q., Nermut’, J., Puza, V., and Mracek, Z. 2012. Heterorhabditis beicherriana n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Shunyi district of Beijing, China. Zootaxa 3569:25–40.
  10. Maneesakorn,P.,An,R., Daneshvar, H.,Taylor, K.,Bai,X., Adams, B. J., and Chandrapatya, A. 2011. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Molecular Phylogenetic and Evolution 59:271–280.
  11. Nguyen, K. B. 2007. Methodology, morphology and identification. Pp. 59–119 in K. B. Nguyen, D. J. Hunt, eds. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. The Netherlands: Brill.
  12. Nylander, J. A. A. 2004. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
  13. Poinar, G.O. Jr. 1992. Steinernema feltiae (Steinernematidae: Rhabditida) parasitizing adult fungus gnats (Mycetophilidae: Diptera) in California. Fundamental and Applied Nematology 15:427–430.
  14. San-Blas, E., Rosales, C., and Torres, A. 2015. Entomopathogenic nematodes in tropical agriculture: current uses and their future in Venezuela. Pp. 365–389 in Campos-Herrera, R. ed. Nematode pathogenesis of insects and other pests—ecology and applied technologies for sustainable plant and crop protection. Switzerland: Springer International Publishing.
  15. Stock, S. P., Choo, H. Y., and Kaya, H. K. 1997. First record of Steinernema glaseri Steiner, 1929 (Nematoda: Steinernematidae) in Korea, with notes on intraspecific variation. Nematologica 43:377–381.
  16. Stock, S. P., Mracek, Z., and Webster, J. M. 2000. Morphological variation between allopatric populations of Steinernema kraussei (Steiner, 1923). (Rhabditida: Steinernematidae) Nematology 2:143– 152.
  17. Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9:678–687.
  18. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725–2729.
  19. Vrain, T. C., Wakarchuk, D. A., Levesque, A. C., and Hamilton, R. I. 1992. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15:563–573.
  20. White, G. F. 1927. A method for obtaining infective nematode larvae
    from cultures. Science 66:302–303.