Acetic Acid, 2-Undecanone, and (E)-2-Decenal Ultrastructural Malformations on Meloidogyne incognita


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 4 (December 2016) > List of articles

Acetic Acid, 2-Undecanone, and (E)-2-Decenal Ultrastructural Malformations on Meloidogyne incognita


Keywords : botanical nematicidals, degeneration, vacuolization, (E )-2-decenal, electron microscopy, root-knot nematodes, ultrastructure

Citation Information : Journal of Nematology. Volume 48, Issue 4, Pages 248-260, DOI:

License : (CC BY 4.0)

Received Date : 10-May-2016 / Published Online: 21-July-2017



The use of natural compounds to control phytonematodes is significantly increasing, as most of the old synthetic pesticides have been banned due to their eco-hostile character. Plant secondary metabolites are now evaluated as biologically active molecules against Meloidogyne spp. but their target site in the nematode body is rarely specified.Herein, we report on the
ultrastructure modifications of the Meloidogyne incognita J2 after treatment with nematicidal plant secondary metabolites, that is acetic acid, (E )-2-decenal, and 2-undecanone. The commercial nematicide fosthiazate acting on acetylcholinesterase was used as control.For this reason, scanning electron microscopy and transmission electron microscopy have been employed. The acetic acid mainly harmed the cuticle, degenerated the nuclei of pseudocoel cells, and vacuolised the cytoplasm. The (E)-2-decenal and 2-undecanone did neither harm to the cuticle nor the somatic muscles but they degenerated the  pseudocoel cells. (E)-2-decenal caused malformation of somatic muscles. According to the above, the nematicidal compounds seem to enter the nematode body principally via the digestive system rather than the cuticle, since the main part of the damage is internal.

Content not available PDF Share



  1. Akhtar, M., and Mahmood, I. 1997. Control of root-knot nematode Meloidogyne incognita in tomato plants by seed coating with Suneem and neem oil. Journal of Pesticide Science 22:37–38.
  2. Aoudia, H., Ntalli, N., Aissani, N., Yahiaoui-Zaidi, R., and Caboni, P.2012. Nematotoxic phenolic compounds from Melia azedarach against Meloidogyne incognita. Journal of Agricultural and Food Chemistry 60:11675–11680.
  3. Back, M. A., Haydock, P. P. J., and Jenkinson, P. 2002. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology 51:683–697.
  4. Baker, J. R. 1958. Principles of biological microtechnique. London:Methuen.
  5. Caboni, P., Ntalli, N. G., Aissani, N., Cavoski, I., and Angioni, A.2012. Nematicidal activity of (E,E)-2,4-E,E)-2,4-decadienal and (E)-2-(E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. Journal of Agricultural and Food Chemistry 60:1146–1151.
  6. Caboni, P., Aissani, N., Cabras, T., Falqui, A., Marotta, R., Liori, B.,Ntalli, N., Sarais, G., Sasanelli, N., and Tocco, G. 2013. Potent nematicidal activity of phthalaldehyde, salicylaldehyde, and cinnamic aldehyde
    against Meloidogyne incognita Journal of Agricultural and Food Chemistry 61:1794–803.
  7. Castaneda, F., Zimmermann, D., Nolte, J., and Baumbach, J. I. 2007. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells. Cell Biology and Toxicology 23:477–485.
  8. Chen, J., Wang, W., Shi, C., and Fang, J. 2014. A comparative study of sodium houttuyfonate and 2-undecanone for their in vitro and in vivo anti-inflammatory activities and stabilities. International Journal
    of Molecular Sciences 15:22978–22994.
  9. Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annual Review of Phytopathology 40:221–249.
  10. Davison, P. F., Cannon, D. J., and Andersson, L. P. 1972. The effects of acetic acid on collagen cross-links. Connective Tissue Research 1:205–216.
  11. Dinh, P. T. Y., Knoblauch, M., and Elling, A. A. 2014. Nondestructive imaging of plant-parasitic nematode development and host response to nematode pathogenesis. Phytopathology 104:497–506.
  12. Eisenback, J. D., and Hunt, D. J. 2009. General Morphology. Pp.18–54 in R. N. Perry, M. Moens, and J. L. Starr. eds. Rootknot nematodes,Wallingford, UK: CABI.
  13. Gomaa, O. M. 2012. The involvement of acetic acid in programmed cell death for the elimination of Bacillus sp. used in bioremediation. Journal of Genetic Engineering and Biotechnology 10:185–192.
  14. Hussey, R. S., and Jansma, P. 1988. Immunogold localization of collagen in the cuticle of different life stages of Meloidogyne incognita. Journal of Nematology 20:641–642.
  15. Isman, M. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51:45–66.
  16. Isman, M. 2008. Botanical insecticides: for richer, for poorer. Pest Management Science 64:8–11.
  17. Kyndt, T., Vieira, P., Gheysen, G., and de Almeida-Engler, J. 2013. Nematode feeding sites: unique organs in plant roots. Planta 238:807–818.
  18. Ludovico, P., Sansonetty, F., Silva, M. T., and C^orte-Real, M. 2003. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Research 3:91–96.
  19. Meade, A. D., Clarke, C., Draux, F., Sockalingum, G. D., Manfait, M.,Lyng, F. M., and Byrne, H. J. 2010. Studies of chemical fixation effects in human cell lines using Raman microspectroscopy. Analytical and Bioanalytical Chemistry 396:1781–1791.
  20. Meher, H. C., Gajbhiye, V. T., Chawla, G., and Singh, G. 2009.Virulence development and genetic polymorphism in Meloidogyne incognita (Kofoid & White) Chitwood after prolonged exposure to sublethal concentrations of nematicides and continuous growing of resistant tomato cultivars. Pest Management Science 65:1201–1207.
  21. Neale, M. 2000. The regulation of natural products as cropprotection agents. Pest Management Science 56:677–680.
  22. Ntalli, N. G., and Caboni, P. 2012. Botanical Nematicides: A Review. Journal of Agricultural and Food Chemistry 60:9929–9940.
  23. Ntalli, N. G., Vargiu, S., Menkissoglu-Spiroudi, U., and Caboni, P.2010. Nematicidal carboxylic acids and aldehydes from Melia azedarach fruits. Journal of Agricultural and Food Chemistry 58:11390–11394.
  24. Ntalli, N. G., Manconi, F., Leonti, M., Maxia, A., and Caboni, P.2011. Aliphatic ketones from Ruta chalepensis (Rutaceae) induce paralysis on root knot nematodes. Journal of Agricultural and Food Chemistry 59:7098–7103.
  25. Ntalli, N., Oplos, C., Michailidis, M., Thanasenaris, A., Kontea, D.,Caboni, P., Tsiropoulos, N. G., Menkissoglu-Spiroudi, U., and Adamski, Z. 2016. Strong synergistic activity and egg hatch inhibition by (E,E )-2,4-decadienal and (E)-2-decenal in Meloidogyne species. Journal of Pest Science 89:565–579.
  26. Palavalli, L. H., Brendza, K. M., Haakenson, W., Cahoon, R. E.,McLaird, M., Hicks, L. M., McCarter, J. P., Williams, D. J., Hresko, M. D., and Jez, J. M. 2006. Defining the role of phosphomethylethanolamine 
    N-methyltransferase from Caenorhabditis elegans in phosphocholine biosynthesis by biochemical and kinetic analysis.Biochemistry 45:6056–6065.
  27. Peck, L. K., and Mashitah, M. D. 2013. The influence of acetic acid concentration on the extractability of collagen from the skin of hybrid Clarias sp. and its physicochemical properties: A preliminary study. Focusing on Modern Food Industry 2:123–128.
  28. Popova, A. A., Koksharova, O. A., Lipasova, V. A., Zaitseva, J. V.,Katkova-Zhukotskaya, O. A., Eremina, S. I., Mironov, A. S.,Chernin, L. S., and Khmel, I. A. 2014. Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster, BioMed Research International 2014:125704.
  29. Prud^encio, C., Sansonetty, F., and C^orte-Real, M. 1998. Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces
    cerevisiae. Cytometry 31:307–313.
  30. Schillhorn van Veen, T. W. 1999. Agricultural policy and sustainable livestock development. International Journal of Parasitology 29:7–15.
  31. Shapiro, I. M., Moar, M. H., Ohno, S., and Klein, G. 1978. Acetic acid treatment denatures DNA while preserving chromosomal morphology during the in situ hybridization procedure. Experimental Cell Research 115:411–414.
  32. Spiegel, Y., and McClure, M. A. 1995. The surface coat of plantparasitic nematodes: Chemical composition, origin, and biological role—A review. Journal of Nematology 27:127–134.
  33. Tian, J., Zeng, X., Feng, Z., Miaoa, X., Peng, X., and Wang, Y. 2014. Zanthoxylum molle Rehd. essential oil as a potential natural preservative in management of Aspergillus flavus. Industrial Crops and Products 60:151–159.
  34. Trudgill, D. L., and Block, V. C. 2001. Apomictic, polyphagous rootknot nematodes: exceptionally successful and damaging biotrophic root pathogens. The Annula Review of Phytopathology 39:53–77.
  35. Vardi, A., Formigginim, F., Casotti, R., De Martino, A., Ribalet, F.,Miralto, A., and Bowler, C. A. 2006. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biology 4:0411–0419.
  36. Wharton, D. A., Petrone, L., Duncan, A., and McQuillan, A. J. 1999. A surface lipid may control the permeability slump associated with entry into anhydrobiosis in the plant parasitic nematode Ditylenchus dipsaci. Journal of Experimenta Biology 211:2901–2908.
  37. Yin, C., Teng, Y., Luo, Y., and Christie, P. 2012. Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil. Journal of Environmental Sciences 24:1843–1853.