Are Entomopathogenic Nematodes Effective Biological Control Agents Against the Carob Moth, Ectomyelois ceratoniae?

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

22
Reader(s)
74
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 4 (December 2016) > List of articles

Are Entomopathogenic Nematodes Effective Biological Control Agents Against the Carob Moth, Ectomyelois ceratoniae?

ZAHRA MEMARI / JAVAD KARIMI * / SHOKOOFEH KAMALI / SEYED HOSSEIN GOLDANSAZ / MOJTABA HOSSEINI

Keywords : biological control, entomopathogenic nematode, insect pathology, pomegranate moth, pathogenicity.

Citation Information : Journal of Nematology. Volume 48, Issue 4, Pages 261-267, DOI: https://doi.org/10.21307/jofnem-2017-034

License : (CC BY 4.0)

Received Date : 07-November-2016 / Published Online: 21-July-2017

ARTICLE

ABSTRACT

The carob moth (Ectomyelois ceratoniae) is the key pest of pomegranate, which causes a significant percentage of losses in
pomegranate orchards and warehouses of Iran annually. The pest larvae are characterized by displaying a cryptic behavior within the fruit, which avoids most routine control techniques, especially chemical method. The low efficiency of traditional measurements and also the rich species diversity of natural enemies within the infested fruits highlight the necessity of exploring effective control methods, especially environmental friendly approaches. Entomopathogenic nematodes (EPNs) are a group of biological control agents that actively search for the host, including those in a cryptic habitat like the carob moth larvae within infested fruits. Here, we assumed that treatment of the infested and dropped fruits with EPNs may provide new insight into the management of the carob moth. Three species of EPNs, Steinernema feltiae, S. carpocapsae, and Heterorhabditis bacteriophora were selected and used in a series of in vitro and in vivo experiments. In preliminary assays, the EPNs species were used with different concentrations of infective juveniles (IJs) (0, 1, 5, 10, 25, and 50 IJ/larvae) in 2-cm diam. plates. The mortality rates of the laboratory tests were 79.75% and 76.5% for S.feltiae and S. carpocapsae, corresponded to LC50 value of 2.02 IJ/larva for S. feltiae and 2.05 IJ/larva for S. carpocapsae. On the contrary,
H. bacteriophora demonstrated low virulence on the pest larvae in petri tests with a LC50 = 426.92 IJ/larva. Hence, both Steinernema species were selected for subsequent experiments. The penetration rate for S. feltiae and S. carpocapsae into the hemocoel of the pest was 43% and 31%, respectively, and the corresponding reproduction rate was 15,452 IJ/larva for S. feltiae and 18,456 IJ/larva for S. carpocapsae. The gathered data from those in vitro tests were used for a field assay. Different concentrations (5, 10, 50, 100, and 160 IJ/cm2 of the arena) of S. feltiae and S. carpocapsae were applied in the field test. The mean mortality results from the last test were 10.89% and 26.65% for S. feltiae and S. carpocapsae, respectively. Finally, we found that these low virulence rates of the nematodes were attributed to inhibitory/repellency effects of saprophytic fungi within the infested pomegranates, a usual status of the infested fruits in autumn or winter seasons. Future work on additional EPN populations more adapted to the extreme conditions of the pomegranate production area in Iran may provide sufficient evidence to continue the further investigation on the best EPN species populations and advanced formulations with high durability.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Bal, H. K., Michael, A., and Grewal, P. S. 2014. Genetic selection of the ambush foraging entomopathogenic nematode Steinernema carpocapsae for enhanced dispersal and its associated trade-offs. Evolutionary Ecology 28:923–939.
  2. Balan, J., and Gerber, N. N. 1972. Attraction and killing of the nematode Panagrellus redivivus by the predaceous fungus Arthrobotrys dactyloides. Nematologica 18:163–173.
  3. Campbell, J. F., and Gaugler, R. 1993. Nictation behavior and its implications in the host search strategies of entomopathogenic nematodes behavior (Heterorhabditidae and Steinernematidae). Behavior 126:155–169.
  4. Campbell, J. F., and Lewis, E. E. 2002. Entomopathogenic nematode host-search strategies. Pp.13–38 in E. E. Lewis, J. F. Campbell, and M. V. K. Sukhdeo, eds. The behavioral ecology of parasites. Wallingford, UK: CABI Publication.
  5. Caroli, L., Glazer, I., and Gaugler, R. 1996. Entomopathogenic nematode infectivity assay: Multi variable comparison of penetration into different hosts. Biocontrol Science and Technology 6:227–233.
  6. de Altube, M. D. M., Strauch, O., de Castro, G. F., and Pena, A. M. 2008. Control of the flat headed root borer Capnodis tenebrionis (Linne) (Coleoptera: Buprestidae) with the entomopathogenic nematode Steinernema carpocapsae (Weiser) (Nematoda: Steinernematidae) in a chitosan formulation in apricot orchards. Biological Control 53:531–539.
  7. El-Borai, F. E., Campos-Herrera, R., Stuart, R. J., and Duncan, L. W. 2011. Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi. Journal of Invertebrate Pathology 106:347–356.
  8. Glazer, I., Salame, L., Dvash, L., Muklada, H., Azaizeh, H., Mreny, R., Markovics, A., and Landau, S. 2015. Effects of tannin-rich host plants on the infection and establishment of the entomopathogenic nematode Heterorhabditis bacteriophora. Journal of Invertebrate Pathology 128:31–36.
  9. Gothilf, S. 1978. Establishment of the imported parasite Pentalitomastix plethoricus (Hym.; Encyrtidae), on Ectomyelois ceratoniae (Lep.: Phycitidae) in Israel. Entomophaga 23:299–302.
  10. Grewal, P. S. 2002. Formulation and application technology. Pp. 265–288 in R. Gaugler, ed. Entomopathogenic nematology. Wallinford, UK: CABI Publishing.
  11. Griffin, C. T. 2015. Behaviour and population dynamics of entomopathogenic nematodes following application. Pp. 57–95 in R. Campos-Herrera, ed. Nematode pathogenesis of insects and other pests: Sustainability in plant and crop protection. Gewerbestrasse, Switzerland: Springer.
  12. Griffin, C. T., Boemare, N. E., and Lewis, E. E. 2005. Biology and behavior. Pp. 47–64 in P. S. Grewal, R.-U. Ehler, and D. I. Shapiro-Ilan, eds. Nematodes as biocontrol agents. Wallingford, UK: CABI Publishing.
  13. Hajimahmodi, M., Moghaddam, G., Ranjbar, A. M., Khazani, H., Sadeghi, N., Oveisi, M. R., and Jannat, B. 2013. Total phenolic, flavonoids, tannin content and antioxidant power of pome Iranian pomegranate flower cultivar. American Journal of Plant Sciences 4:1815–1820.
  14. Kashkooli, A., and Eghtedar, A. 1975. The study of pomegranate worm in Fars region. Applied Entomology and Phytopathology 41:21–32.
  15. Kaya, H. K., and Gaugler, R. 1993. Entomopathogenic nematodes. Annual Review of Entomology 38:181–206.
  16. Kaya, H. K., and Koppenh€ofer, A. M. 1996. Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Science and Technology 6:357–372.
  17. Kaya, H. K., and Stock, S. 1997. Techniques in insect nematology. Pp. 281–284 in L. A. Lacey, ed. Manual of techniques in insect pathology, vol. 1. San Diego, CA: Academic Press.
  18. Kehat, M., Blumberg, D., Dunkelblum, E., and Anshelevich, L.1995. Experiments with synthetic sex pheromones for the control of the raisin moth, and for monitoring the carob moth in date plantations.
    Alon Hanotea 49:284–290.
  19. Kishani-Farhani, H., Goldansaz, S. H., Sabahi, Q., and Shakeri, M.2009. The study on parasitoid larvae of the carob moth in three regions, Varamin, Qom and Saveh. Journal of Iranian Plant Protection 2:337–344. (in Persian).
  20. Koppenh€ofer, A. M., Fuzy, A. M., and Kaya, H. K. 1996. Coexistence of two Steinernematid nematode species (Rhabditida: Steinernematidae) in the presence of two host species. Applied Soil Ecology 4:221–230.
  21. Lacey, L. A. 2016. Microbial control of insect and mite pests: From theory to practice. 1st ed. London: Elsevier.
  22. Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R.,Brownbridge, M., and Goettel, M. S. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132:1–41.
  23. Legaspi, C. A., Legaspi, C. B., and Saldana, R. R. 2000. Evaluation of Steinernema riobravis (Nematoda:Steinernematidae) against the Mexican rice borer (Lepidoptera: Pyralidae). Journal of Entomology Science 35:141–149.
  24. Lewis, E. E., Selvan, S., Campbell, J. F., and Gaugler, R. 1995. Changes in foraging behavior during the infective juvenile stage of entomopathogenic nematodes. Parasitology 110:583–590.
  25. Loya, L. J., and Hower, A. A. 2003. Infectivity and reproductive potential of the Oswego strain of Heterorhabditis bacteriophora associated with life stages of the clover root curculio, Sitona hispidulus. Journal Invertebrate Pathology 83:63–72.
  26. Mehrnejad, M. 2002. Biology of carob moth, Ectomyelois ceratoniae new pest on pistachio in Rafsanjan. Applied Entomology and Phytopathology 60:1–11.
  27. Mnif, I., Elleuch, M., Chaabouni, E. S., and Ghribi, D. 2013. Bacillus subtilis SPB1 bio surfactant: Production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Protection 50:66–72.
  28. Nasrollahi, A. A., Shojai, M., and Ziaii, M. 1998. Large scale production and application of Trichogramma wasps for biological control of pomegranate moth Ectomyelois ceratoniae in Yazd province. Proceeding of 13th Iranian Plant Protection Congress, Junior College of Agriculture, Karaj, Iran. p. 167.

EXTRA FILES

COMMENTS