Species Delimitation and Description of Mesocriconema nebraskense n. sp.(Nematoda: Criconematidae), a Morphologically Cryptic, Parthenogenetic Species from North American Grasslands

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

33
Reader(s)
84
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 49 , ISSUE 1 (March 2017) > List of articles

Species Delimitation and Description of Mesocriconema nebraskense n. sp.(Nematoda: Criconematidae), a Morphologically Cryptic, Parthenogenetic Species from North American Grasslands

MAGDALENA OLSON / TIMOTHY HARRIS / REBECCA HIGGINS / PETER MULLIN / KIRSTEN POWERS * / SEAN OLSON / THOMAS O. POWERS

Keywords : biogeography, cryptic species, nematode distribution, network analysis, plant-parasitic nematodes, tallgrass prairies,
taxonomy
, phylogeny.

Citation Information : Journal of Nematology. Volume 49, Issue 1, Pages 42-66, DOI: https://doi.org/10.21307/jofnem-2017-045

License : (CC BY 4.0)

Received Date : 25-January-2017 / Published Online: 21-July-2017

ARTICLE

ABSTRACT

Nematode surveys of North American grasslands conducted from 2010 to 2015 frequently recovered a species of criconematid nematode morphologically resembling Mesocriconema curvatum. These specimens were recovered from remnant native prairies in the central tallgrass ecoregion of North America, and not from surrounding agroecosystems. Historical records indicate that M. curvatum is a cosmopolitan species feeding on a wide range of agronomic and native plants. DNA barcoding indicates North American grasslands contain at least 10 phylogenetically distinct lineages of Mesocriconema that resemble, but are not, M. curvatum. Analysis of the two most common lineages reveals two distinctly different population structures. The variation in population structure suggests unique evolutionary histories associated with their diversification. These two major lineages share a sympatric distribution and their slight morphological differences contrast with a high level of genetic separation. Based on their genetic divergence, fixed diagnostic nucleotides, population structure, species delimitation metrics, and a sympatric distribution, we believe that one of these distinct lineages warrants formal nomenclatural recognition. Herein, we provide formal recognition for Mesocriconema nebraskense n. sp. and discuss its relationship to other Mesocriconema lineages discovered in native North American grasslands.`

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Andrassy, I. 1965. Verzeichnis und Bestimmungsschl€ussel der Arten der Nematoden-Gattungen Criconemoides Taylor, 1936 und Mesocriconema n. gen. Opusc Zool Budapes 5:153–171.
  2. Armenteros, M., Rojas-Corzo, A., Ruiz-Abierno, A., Derycke, S.,Backeljau, T., and Decraemer, W. 2014. Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear SSU rDNA and mitochondrial COI sequences. Nematology 16(8):979–989.
  3. Avise, J. C. 2000. Phylogeography: The history and formation of species. Harvard University Press.
  4. Brzeski, M. W., Choi, Y. E., and Loof, P. A. A. 2002. Compendium of the genus Mesocriconema Andrassy, 1965 (Nematoda: Criconematidae). Nematology 4(3):341–360.
  5. Chen, H., Strand, M., Norenburg, J. L., Sun, S., Kajihara, H., Chernyshev, A. V., Maslakova, S. A., and Sundberg, P. 2010. Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans
    (Nemertea). PLoS One 5(9):e12885 doi:10.1371/journal. pone.0012885.
  6. Clement, M., Posada, D. C. K. A., and Crandall, K. A. 2000. TCS: A computer program to estimate gene genealogies. Molecular Ecology 9 (10):1657–1659.
  7. Dejaco, T., Gassner, M., Arthofer, W., Schlick-Steiner, B. C. and Steiner, F. M., 2016. Taxonomist’s nightmare. . .evolutionist’s delight: An integrative approach resolves species limits in jumping bristletails despite widespread hybridization and parthenogenesis. Systematic Biology 65:947–974.
  8. Delcourt, H. R. 2002. Forests in peril: Tracking deciduous trees from ice-age refuges into the greenhouse world. McDonald & Woodward Publishing Company.
  9. De Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology 56(6):879–886.
  10. DeSalle, R., Egan, M. G., and Siddall, M. 2005. The unholy trinity:Taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1462):1905–1916.
  11. Dey, A., Chan, C. K., Thomas, C. G., and Cutter, A. D., 2013. Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri. Proceedings of the National Academy of Sciences 110(27):11056–11060.
  12. Ehrlich, P. R., and Wilson, E. O. 1991. Biodiversity studies: Science and policy. Science 253 no. 5021:758.
  13. Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryotic species. Science 296:1061–1063.
  14. Fontaneto, D., and Barraclough, T. G. 2015. Do species exist in asexuals? Theory and evidence from bdelloid rotifers. Integrative and Comparative Biology 1:11.
  15. Fontaneto, D., Barraclough, T. G., Chen, K., Ricci, C., and Herniou, E. A. 2008. Molecular evidence for broad-scale distributions in bdelloid rotifers: Everything is not everywhere but most things are very widespread. Molecular Ecology 17:3136–3146.
  16. Fontaneto, D., Kaya, M., Herniou, E. A., and Barraclough, T. G. 2009. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53:182–189.
  17. French, N., Yu, S., Biggs, P., Holland, B., Fearnhead, P., Binney, B.,Fox, A., Grove-White, D., Leigh, J. W., Miller, W., Muellner, P., and Carter, P. 2013. Evolution of Campylobacter species in New Zealand. Pp. 221–240 in S. K. Sheppard, G. Meric, eds. Campylobacter ecology and evolution. Norfolk, VA: Horizon Scientific Press.
  18. Friedman, J. H. 1989. Regularized discriminant analysis. Journal of the American Statistical Association 84:165–175.
  19. Fu, Y. X., and Li, W. H. 1993. Statistical tests of neutrality of mutations. Genetics 133(3):693–709.
  20. Geraert, E. 2010. The Criconematidae of the world. Identification of the family Criconematidae (Nematoda). Gent, Belgium: Academia Press..
  21. Hardle, W., and Simar, L. 2007. Applied multivariate statistical analysis. Berlin, Germany: Springer.
  22. Hart, M. W., and Sunday, J. 2007. Things fall apart: Biological species form unconnected parsimony networks. Biology Letters 3 (5):509–512.
  23. Hartl, D. L., Clark, A. G., and Clark, A. G. 1997. Principles of population genetics, vol. 116. Sunderland, MA: Sinauer Associates.
  24. Hoffmann, J. K. 1974. Morphological variation in species of Bakernema, Criconema, andCriconemoides (Criconematidae: Nematoda). Iowa State Journal of Research 49:137–153.
  25. Hoffman, R. M. 2002. Wisconsin’s natural communities: How to recognize them, where to find them. Madison, WI: The University of Wisconsin Press.
  26. Jenkins, M. A. 2000. Vegetation communities of Great Smoky Mountains National Park. Southeastern Naturalist, 6 Special Issue 1:35–56.
  27. Jenkins, W. R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter 48:692.
  28. J€orger, K. M., Norenburg, J. L., Wilson, N. G., and Schr€odl, M.2012. Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology 12(1):245.
  29. J€orger, K. M., and Schr€odl, M. 2013. How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10:59.
  30. Kadereit, G., Piirainen, M., Lambinon, J., and Vanderpoorten, A.2012. Cryptic taxa should have names: Reflections in the glasswort genus Salicornia (Amaranthaceae). Taxon 61(6):1227–1239.
  31. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M.,Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. 2012. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics
    28(12):1647–1649.
  32. Knowles, L. L. 2000. Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54(4):1337–1348.
  33. Librado, P., and Rozas, J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 (11):1451–1452.
  34. Loof, P. A. A., and De Grisse, A. 1989. Taxonomic and nomenclatorial observations on the genus Criconemella De Grisse & Loof, 1965. Sensu Luc&Raski, 1981. Mededelingen Faculteit Landbouwwetenschappen 
    Rijksuniversiteit Gent 54:53–74.
  35. Maddison, D. R., and Maddison, W. P. 2000. MacClade 4: Analysis of phylogeny and character evolution, Version 4.0. Sunderland, MA: Sinauer Associates.
  36. Masters, B. C., Fan, V., and Ross, H. A. 2011. Species delimitation: A geneious plugin for the exploration of species boundaries. Molecular Ecology Resources 11(1):154–157.
  37. Morard, R., Escarguel, G., Weiner, A. K., Andre, A., Douady, C. J., Wade, C. M., Darling, K. F., Ujiie, Y., Seears, H. A., Quillevere, F., and de Garidel-Thoron, T. 2016. Nomenclature for the nameless: A proposal
    for an integrative molecular taxonomy of cryptic diversity exemplified by Planktonic Foraminifera. Systematic Biology 65:925–940.
  38. Nadler, S. A., and DE Leon, G. P. P. 2011. Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. Parasitology 138(13):1688–1709.
  39. Neher, D. A., Peck, S. L., Rawlings, J. O., and Campbell, C. L. 1995. Measures of nematode community structure and sources of variability among and within agricultural fields. Plant and Soil 170(1):167–181.
  40. Nei, M., and Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford University Press.
  41. Nieberding, C., Libois, R., Douady, C. J., Morand, S., and Michaux, J. R. 2005. Phylogeography of a nematode (Heligmosomoides polygyrus) in the western Palearctic region: Persistence of northern cryptic populations during ice ages? Molecular Ecology 14(3):765–779.
  42. Norton, D. C. 1978. Ecology of plant-parasitic nematodes. New York: John Wiley & Sons.
  43. Norton, D. C., and Ponchillia, P. E. 1968. Stylet-bearing nematodes associated with plants in Iowa prairies. Iowa Academy of Sciences 75:32–35.
  44. Noss, R. F. 2013. Forgotten grasslands of the south. Washington, DC: Island Press.
  45. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F.,Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R. 2004. Terrestrial ecoregions of the world: A new map of life on earth. BioScience 51:933–938.
  46. Palomares-Rius, J. E., Cantalapiedra-Navarrete, C., and Castillo, P.2014. Cryptic species in plant-parasitic nematodes. Nematology 16 (10):1105–1118.
  47. Pante, E., Schoelink, C., and Puillandre, N. 2015. From integrative taxonomy to species description: One step beyond. Systematic Biology 64:152–160.
  48. Pielou, E. C. 1991. After the ice age: The return of life to glaciated North America. Chicago, IL: The University of Chicago Press.
  49. Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A.,Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P.2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55(4):595–609.
  50. Powers, T. O., Bernard, E. C., Harris, T., Higgins, R., Olson, M.,Lodema, M., Mullin, P., Sutton, L., and Powers, K. S. 2014. COI haplotype groups in Mesocriconema (Nematoda: Criconematidae) and their morphospecies associations. Zootaxa 3827.2:101–146.
  51. Powers, T. O., Harris, T., Higgins, R., Sutton, L., and Powers, K. S.2010. Morphological and molecular characterization of Discocriconemella inarata, an endemic nematode from North American native tallgrass prairies. Journal of Nematology 42:35–45.
  52. Powers, T. O., Mullin, P., Higgins, R., Harris, T., and Powers, K. S. 2016. Description of Mesocriconema ericaceum n. sp. (Nematoda: Criconematidae) and notes on other nematode species discovered in an
    ericaceous heath bald community in Great Smoky Mountains National Park, USA. Nematology 18(8):879–903.
  53. Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G., 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21(8):1864–1877.
  54. Ramırez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F., and Navarro, A. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination.
    Genetics 179(1):555–567.
  55. Raski, D. 1952. On the morphology of Criconemoides Taylor, 1936,with descriptions of six new species. Proceedings of the Helminthological Society 19:85–99.
  56. Raski, D. J. 1958. Nomenclatorial notes on the genus Criconemoides (Nemaotda: Criconematidae) with a key to the species. Proceedings of the Helminthological Society of Washington 25.2:139–142.
  57. Ristau, K., Steinfartz, S., and Traunspurger, W. 2013. First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Molecular Ecology 22(17):4562–4575.
  58. Schmitt, D. P., and Norton, D. C. 1972. Relationships of plant parasitic nematodes to sites in native Iowa prairies. Journal of Nematology 4:200–206.
  59. Strand, M., and Sundberg, P. 2011. A DNA-based description of a new nemertean (phylum Nemertea) species. Marine Biology Research 7(1):63–70.
  60. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123.3:585–595.
  61. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S.2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725–2729.
  62. Tang, C.Q., Leasi, F.,Obertegger, U., Kieneke, A., Barraclough, T. G.,and Fontaneto, D. 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences 109 (40):16208–16212..
  63. Templeton, A. R., Crandall, K. A., and Sing, C. F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132(2):619–633.
  64. Thorne, G., and Malek, R. B. 1968. Nematodes of the Northern Great Plains. Part I. Tylenchida (Nemata: Secernentea). Technical Bulletin South Dakota Agricultural Experiment Station (31).
  65. Walker, M. J., Stockman, A. K., Marek, P. E., and Bond, J. E., 2009. Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: Evidence from population genetic, phylogeographic, and paleoclimatic data. BMC Evolutionary Biology 9(1):25.
  66. Wiens, J. J. 2007. Species delimitation: New approaches for discovering diversity. Systematic Biology 56(6):875–878.
  67. Wouts, W. M. 2006. Criconematina (Nematoda:Tylenchida) fauna of New Zealand 55:1–228.

EXTRA FILES

COMMENTS