First Report and Comparative Study of Steinernema surkhetense (Rhabditida: Steinernematidae) and its Symbiont Bacteria from Subcontinental India

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

29
Reader(s)
91
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 49 , ISSUE 1 (March 2017) > List of articles

First Report and Comparative Study of Steinernema surkhetense (Rhabditida: Steinernematidae) and its Symbiont Bacteria from Subcontinental India

AASHIQ HUSSAIN BHAT / I STKHAR / ASHOK KUMAR CHAUBEY / VLADIMIR PUZA / ERNESTO SAN-BLAS *

Keywords : D2-D3 domain, entomopathogenic nematode, ITS-rDNA, mt COI gene, Xenorhabdus stockiae.

Citation Information : Journal of Nematology. Volume 49, Issue 1, Pages 92-102, DOI: https://doi.org/10.21307/jofnem-2017-049

License : (CC BY 4.0)

Received Date : 12-October-2016 / Published Online: 21-July-2017

ARTICLE

ABSTRACT

Two populations (CS19 and CS20) of entomopathogenic nematodes were isolated from the soils of vegetable fields from
Bijnor district, India. Based on morphological, morphometrical, and molecular studies, the nematodes were identified as Steinernema surkhetense. This work represents the first report of this species in India. The infective juveniles (IJs) showed morphometrical and morphological differences, with the original description based on longer IJs size. The IJs of the Indian isolates possess six ridges in their lateral field instead of eight reported in the original description. The analysis of ITS-rDNA sequences revealed nucleotide differences at 345, 608, and 920 positions in aligned data. No difference was observed in D2-D3 domain. The S. surkhetense COI gene was studied for the first time as well as the molecular characterization of their Xenorhabdus symbiont using the sequences of recA and gyrB genes revealing Xenorhabdus stockiae as its symbiont. These data, together with the finding of X. stockiae, suggest that this bacterium is widespread among South Asian nematodes from the ‘‘carpocapsae’’ group. Virulence of both isolates was tested on Spodoptera litura. The strain CS19 was capable to kill the larvae with 31.78 IJs at 72 hr, whereas CS20 needed 67.7 IJs.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Adams, B. J. 1998. Species concept and the evolutionary paradigm in modern nematology. Journal of Nematology 30:1–21.
  2. Akhurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology 121:303–309.
  3. Alsaiyah, M. A. M., Ebssa, L., Zenner, A., O’Callaghan, K. M., and Griffin, C. T. 2009. Sex ratios and sex-biased infection behaviour in the entomopathogenic nematode genus Steinernema. International Journal for Parasitology 39:725–734.
  4. Bedding, R. A., and Akhurst, R. J. 1975. A simple technique for the detection of insect parasitic nematodes in soil. Nematologica 21:109–110.
  5. Bedding, R. A., and Miller, L. A. 1981. Disinfecting black currant cuttings of Synanthedon tipuliformis, using the insect parasitic nematode, Neoaplectana bibionis. Environmental Entomology 10:449–453.
  6. Campos-Herrera, R., Escuer, M., Robertson, L., and Gutierrez, C.2006. Morphological and ecological characterization of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain isolated from Bibio 
    hortulanus (Diptera: Bibionidae) in Spain. Journal of Nematology 38:68–75.
  7. Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540–552.
  8. Chen, S., Glazer, I., Gollop, N., Cash, P., Argo, E., Innes, A.,Stewart, E., Davidson, I., and Wilson, M. J. 2009. Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS-6 IJs under evaporative and osmotic stresses. Molecular and Biochemical Parasitology 145:195–204.
  9. Courtney,W. D., Polley, D., and Miller, V. L. 1955. TAF, an improved fixative in nematode technique. Plant Disease Reporter 39:570–571.
  10. Divya, K., and Sankar,M. 2009. Entomopathogenic nematodes in pest management. Indian Journal of Science and Technology 2:53–60.
  11. Gal, T. Z., Solomon, A., Glazer, I., and Koltai, H. 2001. Alterations in the levels of glycogen and glycogen synthase transcripts during desiccation in the insect-killing nematode Steinernema feltiae IS-6. Journal
    of Parasitology 87:725–732.
  12. Ganguly, S., and Singh, L. K. 2000. Steinernema thermophilum (Rhabditida: Steinernematidae) from India. International Journal of Nematology 10:183–191.
  13. Ganguly, S., and Singh, L. K. 2003. Report on pygmy females in Steinernema thermophilum Ganguly and Singh, 2000 (Rhabditida: Steinernematidae). Indian Journal of Nematology 33:195–196.
  14. Ganguly, S., Singh, M., Lal, M., Singh, L. K., Vyas, R. V., and
    Patel, D. J. 2002. New record of an entomopathogenic nematode, Steinernema riobrave Cabanillas, Poinar and Raulston, 1994 from Gujarat, India. Indian Journal of Nematology 32:223.
  15. Harris, N. C., Coonan, T. J., King, J. L., and Dunn, R. R. 2013. Endemism in host–parasite interactions among island populations of an endangered species. Diversity and Distributions 19:377–38.
  16. Hazir, S., Stock, S. P., and Keskin, N. 2003. A new entomopathogenic nematode, Steinernema anatoliense n. sp. (Rhabditida: Steinernematidae), from Turkey. Systematic Parasitology 55:211–220.
  17. Huelsenbeck, J. P., and Ronquist, F. 2001. MR-BAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755.
  18. Hunt, D. J. 2007. Overview of taxonomy and systematics. Pp. 27–57 in K. B. Nguyen, and D. J. Hunt, eds. Entomopathogenic nematodes: Systematics, phylogeny and bacterial symbionts. Nematology Monographs
    and Perspectives vol. 5. Leiden, the Netherlands: Brill.
  19. Hussaini, S. S., Ansari, M. A., Ahmad, W., and Subbotin, S. A. 2001. Identification of some Indian populations of Steinernema species (Nematoda) by RFLP analysis of ITS region of rDNA. International Journal of Nematology 11:73–76.
  20. Kaya, H. K., Aguillera, M. M., Alumai, A., Choo, H. Y., De la Torre, M., Fodor, A., Ganguly, S., Hazir, S., Lakatos, T., and Pye, A. 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological Control 38:134–155.
  21. Kaya, H. K., and Gaugler, R. 1993. Entomopathogenic nematodes. Annual Review of Entomology 38:181–206.
  22. Kadav, A., and Lalramliana. 2012. Efficacy of indigenous entomopathogenic nematodes from Meghalaya, India against the larvae of taro leaf beetle, Aplosonyx chalybaeus (Hope). Journal of Parasitic Diseases 36:149–154.
  23. Khatri-Chhetri,H. B.,Waeyenberge,L., Spiridonov,S.,Manandhar,H. K., and Moens, M. 2011. Two new species of Steinernema Travassos, 1927 with short infective juveniles from Nepal. Russian Journal of Nematology 19:53–74.
  24. Lewis, E. E., Gaugler, R., and Harrison, A. 1992. Entomopathogenic nematode host-finding: Response to contact cues by cruise and ambush foragers. Parasitology 105:309–315.
  25. Lewis, E. E., Gaugler, R., and Harrison, R. 1993. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology 71:765–769.
  26. Maneesakorn, P., Grewal, P. S., and Chandrapatya, A. (2010). Steinernema minutum sp. nov. (Rhabditida: Steinernema): A new entomopathogenic nematode from Thailand. International Journal of Nematology 20:27–42.
  27. Nguyen, K. B., and Smart, G. C. 1995. Scanning electron microscope studies of Steinernema glaseri (Nematoda: Steinernematidae). Nematologica 41:183–190.
  28. Nguyen, K. B., and Smart, G. C. 1997. Scanning electron microscope studies of spicules and gubernacula of Steinernema spp. (Nemata:Steinernematidae). Nematologica 43:465–480.
  29. Nylander, J. A. A. 2004. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.
  30. Phan, K. L., Mracek, Z., Puza, V., Nermut, J., and Jarosova, A. 2014. Steinernema huense sp. n., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Vietnam. Nematology 16:761–775.
  31. Poinar, G. O., Jr. 1976. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. gen. n. sp. ((Rhabditida: Heterorhabditidae fam.). Nematologica 21:463–470.
  32. Puza, V., Nermut’, J., Mracek, Z., Gengler, S., and Haukeland, S.Steinernema pwaniensis n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Tanzania. Journal of Helminthology 91:20–34.
  33. Rai, M., and Pandey, A. K. 2007. Towards a rainbow revolution. The Hindu Survey of Indian Agriculture,. Sec 5:112–114.
  34. San-Blas, E. 2013. Progress on entomopathogenic nematology research:A bibliometric study of the last three decades: 1980-2010. Biological Control 66:102–124.
  35. San-Blas, E., Morales-Montero, P., Portillo, E., Nermut’, J., and Puza, V. 2016. Steinernema goweni n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Zulia State, Venezuela. Zootaxa 4067:200–214.
  36. Sandstr€om, J. P., Russel, J. A., White, J. P., and Moran, N. A. 2001. Independent origins and horizontal transfer of bacterial symbionts of aphids. Molecular Ecology 10:217–228.
  37. Seinhorst, J.W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica. 4:67–69.
  38. Shapiro-Ilan, D. I., Stuart, D. I., and McCoy, C. W. 2003. Comparison of beneficial traits among strains of the entomopathogenic nematode, Steinernema carpocapsae, for control of Curculio caryae (Coleoptera:Curculionidae). Biological Control. 28:129–136.
  39. Stock, S. P., Somsook, V., and Reid, A. 1998. Steinernema siamkayai n. sp. (Rhabditida: Steinernematidae), an entomopathogenic nematode from Thailand. Systematic Parasitology 41:105–113.
  40. Tailliez, P., Laroui, C., Ginibre, N., Paule, A., Pages, S., and Boemare, N. 2010. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology 60:1921–1937.
  41. Tailliez, P., Pages, S., Ginibre, N., and Boemare, N. 2006. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology 56:2805–2818.
  42. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S.2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Molecular Biology and Evolution 30:2725–2729.
  43. Travassos, L. 1927. Sobre o genero Oxysomatium. Boletim Biologico, Sao Paulo. 5:20–21.
  44. White, G. F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66:302–303.

EXTRA FILES

COMMENTS