Nematicidal Effects of 5-Aminolevulinic Acid on Plant-Parasitic Nematodes


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 49 , ISSUE 3 (September 2017) > List of articles

Nematicidal Effects of 5-Aminolevulinic Acid on Plant-Parasitic Nematodes


Keywords : Bursaphelenchus, Heterodera, Meloidogyne, nematicide, oxidase activity, Patylenchus.

Citation Information : Journal of Nematology. Volume 49, Issue 3, Pages 295-303, DOI:

License : (CC BY 4.0)

Received Date : 09-January-2017 / Published Online: 05-December-2017

Open Access article funded by National Nature Science Foundation of China (30800717) , Special Fund for Agroscientific Research in the Public Interest, China (201103018)



Plant-parasitic nematodes are important agricultural pests and often cause serious crop losses. Novel, environmental friendly nematicides are urgently needed because of the harmful effects of some existing nematicides on human health. 5-Aminolevulinic acid (ALA) was reported as a potential biodegradable herbicide, insecticide, or plant-growth promoting agent. Lack of information on ALA against plant-parasitic nematodes prompted this investigation to determine the effects of ALA on Meloidogyne incognita, Heterodera glycines, Pratylenchus coffeae, and Bursaphelenchus xylophilus. A series of in vitro assays and one greenhouse trial were conducted to examine the nematicidal effects of ALA. The results demonstrated that ALA exhibited a strong effect of suppression against the four nematodes tested. ALA also inhibited hatching of M. incognita and H. glycines. Results from the greenhouse experiment indicated that treatment of soil with 6.0 mM ALA significantly reduced the root-gall index (RGI) and egg mass number per root system compared with the uninoculated control (P # 0.05). The metabolism assays indicated that ALA treatment significantly altered the nematode metabolism including the total protein production, malondialdehyde (MDA) content, and oxidase activities. This study suggested that ALA is a promising nematicide against plant-parasitic nematodes.

Content not available PDF Share



Abawi, G. S., and Widmer, T. L. 2000. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology 15:37–47.


Aebi, H. 1974. Catalase. Pp. 674–684 in H. U. Bergmeyer, ed. Methods of enzymatic analysis. New York: Academic Press.


Amor, B. T., Bortolotto, L., and Jori, G. 2000. Porphyrins and related compounds as photoactivatable insecticides: 3. Laboratory and field studies. Photochemistry and Photobiology 71:124–128.


Baldwin, J. G., and Hirschmann, H. 1975. Body wall fine structure of the anterior region of Meloidogyne incognita and Heterodera glycines males. Journal of Nematology 7:175–193.


Barker, K. R. 1978. Determining nematode population responses to control agents. Pp. 114–125 in E. I. Zehr, ed. Methods for evaluating plant fungicides, nematicides and bactericides. St. Paul, MN: American Phytopathological Society Press.


Beeley, J. A., Newman, F., Wilson, P. H. R., and Shimmin, I. C. 1996. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of human parotid salivary proteins: Comparison of dansylation, coomassie blue R-250 and silver detection methods. Electrophoresis 17:505–506.


Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254.


Cheng, F., Zhang, D., Liu, Y., Wang, J., Cheng, J., and Zhang, Z. 2014. The nematicial effects of 5-aminolevulinic acid on Meloidogyne incognita. Journal of Nematology 46:144.


Cheng, F. X., Zhang, D. Y., He, M. Y., and Liu, Y. 2010. Species identification and occurrence investigation of root-knot nematodes on vegetables in Hunan Province. Plant Protection 36:128–132.


Cheng, X. Y., Cheng, F. X., Xu, R. M., and Xie, B. Y. 2008. Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) and its possible spread routes in China. Heredity (Edinb) 100:356–365.


Chitwood, D. J. 2003. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Management Science 59:748–753.


Draper, H. H., and Hadley, M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology 186:421–431.


Ellman, G. L., Courtney, K. D., Andres, V., and Feather-Stone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7:88–95.


Esterbauer, H., and Cheeseman, K. H. 1990. Determination of aldehydiclipid peroxidation products: Malonaldehyde and hydroxynonenal. Pp. 407–421 in


L. Parcker and A. N. Glazer, eds. Methods in enzymology, vol. 186. Part B. New York: Academic Press.


Hussey, R. S., and Barker, K. R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57:1025–1028.


Kurien, B. T., and Scofield, R. H. 2003. Free radical mediated peroxidative damage in systemic lupus erythematosus. Life Science 73:1655–1666.


Li, W. J., Li, Q., and Hu, X. Q. 2009. Nematicidal activity and control efficiency of pyroligneous liquor on Meloidogyne spp. Scientia Agricultura Sinica 42:4120–4126.


Li, Y. M., Guo, Y. P., Li, Q., Zheng, H., and Ma, E. 2005. Effect of porphyrin insecticides agent on Oxya chinensis and mechanisms. Journal Shanxi University (Natscied) 28:196–201.


Mamiya, Y. 1975. Estimating population of nematodes inhabiting pine wood by the Baermann funnel method. Forest Pests 24:115–119.


Monteiro, H. P., Abdalla, D. S. P., Augusto, O., and Bechara, E. J. H. 1989. Free radical generation during d-aminolevulinic acid autoxidation: Induction by hemoglobin and connections with porphyrinpathies. Archives of Biochemistry and Biophysics 271:206–216.


Moody, E. H., Lownsbery, B. F., and Ahmed, J. M. 1973. Culture of the root-lesion nematode Pratylenchus vulnus on carrot disks. Journal of Nematology 5:225–226.


Oka, Y., Koltai, H., Bareyal, M., Mor, M., Sharon, E., Chet, I., and Spiegel, Y. 2000. New strategies for the control of plant-parasitic nematodes. Pest Management Science 56:983–988.


Oteiza, P. I., and Bechara, E. J. 1993. 5-aminolevulinic acid induces lipid peroxidation in cardiolipin-rich liposomes. Archives of Biochemistry and Biophysics 305:282–287.


Rebeiz, C. A., Juvik, J. A., and Rebeiz, C. C. 1988. Porphyric insecticides: 1. Concept and phenomenology. Pesticide Biochemistry and Physiology 30:11–27.


Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J., and Wu, S. M. 1984. Photodynamic herbicides: 1. Concept and phenomenology. Enzyme and Microbial Technology 6:390–401.


Rich, J. R., Dunn, R. A., and Noling, J. W. 2004. Nematicides: Past and present uses. Pp. 1179–1200 in Z. X. Chen, S. Y. Chen, and D. W. Dickson, eds. Nematology: Advances and perspectives, nematode management and utilization, vol. 2. Wallingford, UK: CABI Publishing.


Rocha, M. E., Dutra, F., Bandy, B., Baldini, R. L., Gomes, S. L., Faljoni-Al_ario, A., Liria, C.W., Miranda, M. T., and Bechara, E. J. 2003. Oxidative damage to ferritin by 5-aminolevulinic acid. Archives of Biochemistry and Biophysics 409:349–356.


Sasaki, K., Watanabe, M., and Tanaka, T. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology 58:23–29.


Sasikala, C., Ramana, C. V., and Rao, R. P. 1994. 5-aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnology Progress 10:451–459.


Schneider, S. M., Rosskopf, E. N., Leesch, J. G., Chellemi, D. O., Bull, C. T., and Mazzola, M. 2003. United States Department of Agriculture- Agricultural Research Service research on alternatives to methyl bromide: Pre-plant and post-harvest. Pest Management Science 59:814–826.


Xie, C. R., Zhang, J. Z., Yin, K., Wu, H. H., Gou, Y. P., and Ma, E. B. 2007. 5-Aminolevulinic acid, exerts effective toxicity to Oxya chinensis (Orthoptera:Acridoidean) and effect on enzymes. Journal of Shanxi Agricultural University 30:103–107.


Yin, K., Ma, E. B., Xue, C. R., Wu, H. H., Guo, Y. P., and Zhang, J. Z. 2008. Insecticidal activities of 5-aminolevulinic acid on Oxya chinensis and effect on three kinds of enzymes. Scientia Agricultura Sinica 41:2003–2007.


Zhang, D. Y., Cheng, F. X., Cheng, J. E., Zhang, Z. H., and Liu, Y. 2007. Cloning and prokaryotic expression of Rhodoblastus acidophilus 5-aminolevlinate synthase gene. Acta Microbiologica Sinica 47:639–644.