Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 49 , ISSUE 3 (September 2017) > List of articles

Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria


Keywords : Meloidogyne arenaria, Pasteuria penetrans, root exudates, root-knot nematode, spore attachment

Citation Information : Journal of Nematology. Volume 49, Issue 3, Pages 304-310, DOI:

License : (CC BY 4.0)

Received Date : 14-April-2017 / Published Online: 05-December-2017



Abstract: The bacterium Pasteuria penetrans is a parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria. Pretreatment of J2 with root exudates of eggplant (Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria, indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease.

Content not available PDF Share



Afolabi, P., O’Shea, P. S., and Davies, K. G. 1995. The electrostatic nature of the spore of Pasteuria penetrans, the bacterial parasite of rootknot nematodes. Journal of Applied Bacteriology 79:244-249.


Ahmed, R., and Gowen, S. R. 1991. Studies on the infection of Meloidogyne spp. with isolates of Pasteuria penetrans. Nematologia Mediterranea 19:229–233.


Akhkha, A., Kusel, J., Kennedy, M., and Curtis, R. 2002. Effects of phytohormones on the surfaces of plant-parasitic nematodes. Parasitology 125:165–175.


Badri, D. V., and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant, Cell and Environment 32:666–681.


Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57:233–266.


Berns, A. E., Philipp, H., Narres, H. D., Burauel, P., Vereecken, H., and Tappe, W. 2008. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science 59:540–550.


Bertin, C., Yang, X., andWeston, L. A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 256:67–83.


Bird, A. F., Bonig, I., and Bacic, A. 1989. Factors affecting the adhesion of micro-organisms to the surfaces of plant-parasitic nematodes. Parasitology 98:155–164.


Blaxter, M. L., Page, A. P., Rudin, W., and Maizels, R. M. 1992. Nematode surface coats - Actively evading immunity. Parasitology Today 8:243–247.


Chen, Z. X., and Dickson, D. W. 1998. Review of Pasteuria penetrans: Biology, ecology, and biological control potential. Journal of Nematology 30:313–340.


Chen, Z. X., Dickson, D. W., McSorley, R., Mitchell, D. J., and Hewlett, T. E. 1996. Suppression of Meloidogyne arenaria race 1 by soil application of endospores of Pasteuria penetrans. Journal of Nematology 28:159–168.


Curtis, R. H. C. 2008. Plant-nematode interactions: Environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 15:310–316.


Dao, T. 2014. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. Journal of Environmental Quality 18:39–44.


Davies, K. G., and Curtis, R. H. C. 2011. Cuticle surface coat of plant-parasitic nematodes. Annual Review of Phytopathology 49:135–156.


Davies, K. G., and Danks, C. 1992. Interspecific differences in the nematode surface coat between Meloidogyne incognita and M. arenaria related to the adhesion of the bacterium Pasteuria penetrans. Parasitology 105:475–480.


Davies, K. G., and Danks, C. 1993. Carbohydrate/protein interactions between the cuticle of infective juveniles of Meloidogyne incognita and spores of the obligate hyperparasite Pasteuria penetrans. Nematologica 39:53–64.


Davies, K. G., Flynn, C. A., and Kerry, B. R. 1988. The life cycle and pathology of the root-knot nematode parasite Pasteuria penetrans. Brighton Crop Protection Conference. London: British Crop Protection Council.


De Hoff, P. L., Brill, L. M., and Hirsch, A. M. 2009. Plant lectins: The ties that bind in root symbiosis and plant defense. Molecular Gnetics and Genomics 282:1–15.


de Mendoza, M. E. L., Modha, J., Roberts, M. C., Curtis, R., and Kusel, J. R. 2000. Changes in the lipophilicity of the surfaces of Meloidogyne incognita and Haemonchus contortus during exposure to host signals. Parasitology 120:203–209.


Egli, M., Mirabella, A., Kaegi, B., Tomasone, R., and Colorio, G. 2006. Influence of steam sterilisation on soil chemical characteristics, trace metals and clay mineralogy. Geoderma 131:123–142.


Fioretti, L., Porter, A., Haydock, P. J., and Curtis, R. 2002. Monoclonal antibodies reactive with secreted–excreted products from the amphids and the cuticle surface of Globodera pallida affect nematode movement and delay invasion of potato roots. International Journal for Parasitology 32:1709–1718.


Grenache, D. G., Caldicott, I., Albert, P. S., Riddle, D. L., and Politz, S. M. 1996. Environmental induction and genetic control of surface antigen switching in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 93:12388–12393.


Hatz, B., and Dickson, D. W. 1992. Effect of temperature on attachment, development, and interactions of Pasteuria penetrans on Meloidogyne arenaria. Journal of Nematology 24:512–521.


Huang, X. F., Chaparro, J. M., Reardon, K. F., Zhang, R. F., Shen, Q., and Vivanco, J. M. 2014. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 92:267–275.


Hussey, R. S., and Barker, K. R. 1973. A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Disease Reporter 57:1025–1028.


Jones, D. L., and Edwards, A. C. 1998. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biology and Biochemistry 30:1895–1902.


Liegel, L. H. 1986. Effects of sterilization procedures on the biological, chemical, and physical properties of soils: A review. Turrialba 36:11–19.


Mahmood, T., Mehnaz, S., Fleischmann, F., Ali, R., Hashmi, Z.H., and Iqbal, Z. 2014. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia 57:123–130.


Maizels, R. M., Blaxter, M. L., and Selkirk, M. E. 1993. Forms and functions of nematode surfaces. Experimental Parasitology 77:380–384.


Martinez-Toledo, M. V., de la Rubia, T., Moreno, J., and Gonzalez- Lopez, J. 1988. Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant and soil 110:149–152.


Mateille, T., Duponnois, R., and Diop, M. T. 1995. Influence of abiotic soil factors and the host plant on the infection of photoparasitic nematodes of the genus Meloidogyne by the actinomycete parasitoid Pasteuria penetrans. Agronomie 15:581–591.


Modha, J., Kennedy, M. W., and Kusel, J. R. 1995. A role for second messengers in the control of activation-associated modification of the surface of Trichinella spiralis infective larvae. Molecular and biochemical parasitology 72:141–148.


Modha, J., Roberts, M. C., Robertson, W. M., Sweetman, G., Powell, K. A., Kennedy, M. W., and Kusel, J. R. 1999. The surface coat  of infective larvae of Trichinella spiralis. Parasitology 118:509–522.


Muhammad, A., and Frankenberger, K. T., Jr. 1998. Plant growthregulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy 62:145–151.


Neumann, G., Bott, S., Ohler, M. A., Mock, H. P., Lippmann, R., Grosch, R., and Smalla, K. 2014. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Frontiers in Microbiology 5:2.


Olsen, D. P., Phu, D., Libby, L. J. M., Cormier, J. A., Montez, K. M., Ryder, E. F., and Politz, S. M. 2007. Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans. Genes, Brain and Behavior 6:240–252.


Proudfoot, L., Kusel, J. R., Smith, H. V., Harnett, W., Worms, M. J., and Kennedy, M. W. 1993. Rapid changes in the surface of parasitic nematodes during transition from pre- to post-parasitic forms. Parasitology 107:107–117.


Robertson, W. M., Spiegel, Y., Jansson, H. B., Marbanmendoza, N., and Zuckerman, B. M. 1989. Surface carbohydrates of plant parasitic nematodes. Nematologica 35:180–186.


Sayre, R. M., and Starr, M. P. 1985. Pasteuria penetrans (ex Thorne, 1940) nom. rev., comb. n., sp. n. a mycelial and endospore-forming bacterium parasitic in plant-parasitic nematodes. Proceedings of the Helminthological Society of Washington 52:149–165.


Shamseldean, M. M., Platzer, E. G., and Gaugler, R. 2007. Role of the surface coat of Romanomermis culicivorax in immune evasion. Nematology 9:17–19.


Sharon, E., and Spiegel, Y. 1996. Gold-conjugated reagents for the labelling of carbohydrate recognition domains and glycoconjugates on nematode surfaces. Journal of Nematology 28:124–127.


Spiegel,Y., Kahane, I., Cohen, L., andSharon,E.1997.Meloidogyne javanica surface proteins: Characterization and lability. Parasitology 115:513–519.


Spiegel, Y., and McClure, M. A. 1995. The surface-coat of plantparasitic nematodes - chemical-composition, origin, and biological role - A review. Journal of Nematology 27:127–134.


Spiegel, Y., Sharon, E., and Mor, M. 1996. Attachment of Pasteuria penetrans endospores to the surface of Meloidogyne javanica secondstage juveniles. Journal of nematology 28:328–334.


Stirling, G. R. 1984. Biological control of Meloidogyne javanica and Bacillus penetrans. Phytopathology 74:55–60.


Trudgill, D. L., Bala, G., Blok, V. C., Daudi, A., Davies, K. G., Gowen, S. R., and Voyoukallou, E. 2000. The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845.