Nematode Genome Announcement: A Draft Genome for Rice Root-Knot Nematode, Meloidogyne graminicola

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

29
Reader(s)
112
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 50 , ISSUE 2 (September 2018) > List of articles

Nematode Genome Announcement: A Draft Genome for Rice Root-Knot Nematode, Meloidogyne graminicola

Vishal Singh Somvanshi / Madhura Tathode / Rohit Nandan Shukla / Uma Rao *

Keywords : Meloidogyneg graminicola, Rice root-knot nematode, Genomics, Draft genome, Sequencing, Illumina GAIIx

Citation Information : Journal of Nematology. VOLUME 50 , ISSUE 2 , ISSN (Online) 2640-396X, DOI: 10.21307/jofnem-2018-018, September 2018 © 2018.© The Society of Nematologists

License : (PUBLISHER)

Published Online: 03-September-2018

ARTICLE

ABSTRACT

The rice root-knot nematode Meloidogyne graminicola has emerged as a devastating pest of rice in South-East Asian countries. Here we present a draft genome sequence for M. graminicola, assembled using data from short and long insert libraries sequenced on Illumina GAIIx sequencing platform.

Graphical ABSTRACT

Rice is the second most important food crop in the world after corn based on the total production. In 2016, rice was cultivated in 161.1 million ha area, and the global production was 482 million metric tons (World Rice Statistics, International Rice Research Institute, Manila, Philipines, http://ricestat.irri.org:8080/wrsv3/entrypoint.htm). The rice root-knot nematode, Meloidogyne graminicola, has emerged as a devastating pest of rice in South-East Asia (Dutta et al., 2012; Mantelin et al., 2016), where it is highly damaging under upland, rainfed lowland (Prot et al., 1994) and irrigated (Netscher and Erlan, 1993) cultivation conditions. Severe M. graminicola infection is known to cause 100% damage to the rice nursery. Here, we report the sequencing and assembly of the genome of M. graminicola IARI strain. This resource would help researchers investigate and understand the unique biology of this nematode and discover new strategies for its management.

Considering the ~30 Mb genome size of M. graminicola as predicted by Feulgen densitometry (Lapp and Triantaphyllou, 1972), we planned to generate two libraries of varying insert length with ~150× depth of data (~4.5 Gb) per library using paired-end sequencing to achieve a comprehensive assembly. The M. graminicola population was collected from the infected rice fields from Indian Agricultural Research Institute farm, New Delhi, and multiplied from a single egg mass in pots under greenhouse conditions. Freshly hatched second stage juveniles were used for the genomic DNA extraction using Gentra Puregene Tissue Kit (Cat No.: 158667 Qiagen, Valencia, CA, USA). The short (150–200 bp) and long (300–500 bp) DNA fragments were obtained by diluting 1 µg of genomic DNA in 100 µl nuclease free water (Ambion, Waltham, MA, USA) and sonication by Bioruptor (Diagenode, Seraing (Ougrée), Belgium) at 20 and 13 pulses at 30 sec ON and 30 sec OFF, respectively. The resulting fragmented DNA was cleaned using QIAquick columns (Qiagen, Valencia, CA, USA). The size distribution was checked by running an aliquot of the fragmented DNA sample on Agilent high sensitivity bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Subsequently, the libraries for whole genome sequencing were constructed as per the Illumina TruSeq DNA sample preparation guide (Illumina, San Diego, CA, USA). The sequencing was performed on Illumina GAIIx platform at the Genotypic Technology Pvt. Ltd., Bengaluru, India.

A total of ~130 million raw reads were generated comprising of 13 Gb sequence data using 100 bp paired-end sequencing. Approximately 120 million High Quality (HQ) reads were obtained from the raw data by using NGS QC Tool Kit v.2.3.3 (Patel and Jain, 2012). These ~12 Gb of 120 million HQ reads were better than our planned strategy expecting nine Gb. The HQ reads obtained from both short and long insert libraries were used to generate primary assembly using Platanus assembler v.1.2.4 (Kajitani et al., 2014), and the resulting contigs were further scaffolded using Platanus Scaffolding module to generate secondary assembly. The secondary assembly was further refined by Redundans pipeline (Pryszcz and Gabaldón, 2016) to generate the final genome assembly with a minimum sequence length of 500 bp. The contaminating mitochondrial and bacterial sequences were identified by NCBI servers and removed from the draft genome assembly prior to submission to the NCBI GenBank. The mitochondrial genome was assembled separately from complete HQ reads using SPAdes assembler (Bankevich et al., 2012) with coverage cutoff of 500, wherein available M. graminicola mitochondrial genome sequences (accession nos. HG529223, KJ139963) obtained from GenBank were provided as trusted contigs to the SPAdes assembler. This resulted in only 4 scaffolds from the assembly. The resulted scaffolds from SPAdes assembler were further merged using EMBOSS merger tool (Rice et al., 2000) to construct full length mitochondrial genome. The assembled genome was further annotated using MITOS (Bernt et al., 2013) and ARWEN (Laslett and Canbäck, 2008) servers.

The final M. graminicola genome sequence assembly was of 38.18 Mb size, and included 4,304 scaffolds with an average scaffold length of 8.87 Kb. The minimum and maximum scaffold length was 501 bp and 145 Kb, respectively. The N50 and N90 lengths for the final assembly were 20.4 Kb and 4.2 Kb, respectively. The GC content of the assembled genome was 23.05%, and there were 1.88% N’s in the assembly. Core Eukaryotic Genes Mapping Approach (CEGMA) (Parra et al., 2007) was used to assess the completeness of the M. graminicola genome assembly, and out of 248 core genes, 209 complete (84.27%) and 225 partial (90.73%) core eukaryotic genes (CEGs) were found to be present. Identification of protein-coding genes was carried out by using GenMark-ES tool (Borodovsky and McIninch, 1993) which predicted 10,196 protein-coding genes, as compared with 6,712 to 20,317 in other plant-parasitic nematode genomes (summarized in Kikuchi et al., 2017). Functional annotation of predicted M. graminicola protein-coding genes performed using OrthoMCL (Li et al., 2003) identified 5,427 proteins that shared high homology with other Meloidogyne spp. In addition, 245 tRNA genes were predicted. The mitochondrial genome sequence of M. graminicola IARI strain was 19,019 bp long and contained 12 protein-coding genes, 22 tRNA and two ribosomal RNA genes. Based on the mitochondrial genome sequence, the M. graminicola IARI strain appears phylogenetically closer to the M. graminicola strain from Philippines (HG529223, 20,030 bp, Besnard et al., 2014) as compared with the Chinese strain (KJ139963, 19,589 bp, Sun et al., 2014).

The present assembly size deviates from that of the ~30 Mb as predicted by Feulgen densitometry (Lapp and Triantaphyllou, 1972). Using sequencing technologies that produce longer reads such as PacBio or mate pair sequencing to obtain better genome assemblies, and, inbreeding the nematode strain to be used for sequencing to reduce possible heterozygosity might help in correcting the mismatch between predicted and assembled genome sizes. However, N50 value, complete and partial CEGs and other genome statistics for our M. graminicola assembly are comparable to the closely related and published plant-parasitic nematode genomes solved using similar sequencing platforms (Supplementary Table A1).

Supplementary Table A1

A comparison of Meloidogyne graminicola genome information with the published plant-parasitic nematode genomes.

10.21307_jofnem-2018-018-t00A1.jpg

This draft genome sequence would be useful for the researchers working on comparative genomics of Meloidogyne and other tylenchid nematodes, and enable functional genomics in M. graminicola. We understand that the present M. graminicola draft genome is incomplete, and expect to improve it in the near future. The present assembly would work as a base for the further improvement of the M. graminicola genome sequence.

GenBank accession numbers: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession NXFT00000000. The raw DNA sequence data was deposited in GenBank under BioSample no. SAMN04041660, BioProject No. PRJNA411966 and SRX1224028 (long insert library) and SRX1223928 (short insert library), respectively. The mitochondrial genome was submitted to GenBank under accession no. MG763561.

Acknowledgements

We acknowledge funding from ICAR-IARI through the IARI Outreach project IARI:ORP: NEM:09:14, and from the Department of Biotechnology, Government of India through grant no. BT/PR/5163/7/397/2012. We thank the Director, IARI and the Joint Director (Research), IARI for the facilities and support.

Appendices

Appendix

Supplementary Table A1

References

Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., Caillaud, M. C., Coutinho, P. M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J. V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier T. R., Markov, G. V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Segurens, B., Steinbach, D., Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T. J., Blaxter, M., Bleve-Zacheo, T., Davis, E. L., Ewbank, J. J., Favery, B., Grenier, E., Henrissat, B., Jones, J. T., Laudet, V., Maule, A. G., Quesneville, H., Rosso, M. N., Schiex, T., Smant, G., Weissenbach, J., and Wincker, P. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26:909–915.

Blanc-Mathieu, R., Perfus-Barbeoch, L., Aury, J. M., Da Rocha, M., Gouzy, J., Sallet, E., Martin-Jimenez, C., Bailly-Bechet, M., Castagnone-Sereno, P., Flot, J. F., Kozlowski, D. K., Cazareth, J., Couloux, A., Da Silva, C., Guy, J., Kim-Jo, Y., Rancurel, C., Schiex, T., Abad, P., Wincker, P., and Danchin, E. G. J. 2017. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genetics 13:e1006777.

Burke, M., Scholl, E. H., Bird, D. M., Schaff, J. E., Colman, S. D., Crowell, R., Diener, S., Gordon, O., Graham, S., Wang, X., Windham, E., Wright, G. M., and Opperman, C. H. 2015. The plant parasite Pratylenchus coffeae carries a minimal nematode genome. Nematology 17:621–637.

Cotton, J. A., Lilley, C. J., Jones, L. M., Kikuchi, T., Reid, A. J., Thorpe, P., Tsai, I. J., Beasley, H., Blok, V., Cock, P. J., Eves-van den Akker, S., Holroyd, N., Hunt, M., Mantelin, S., Naghra, H., Pain, A., Palomares-Rius, J. E., Zarowiecki, M., Berriman, M., Jones, J. T., and Urwin, P. E. 2014. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology 15:R43.

Eves-van den Akker, S., Laetsch, D. R., Thorpe, P., Lilley, C. J., Danchin, E. G., Da Rocha, M., Rancurel, C., Holroyd, N. E., Cotton, J. A., Szitenberg, A., Grenier, E., Montarry, J., Mimee, B., Duceppe, M. O., Boyes, I., Marvin, J. M. C., Jones, L. M., Yusup, H. B., Lafond-Lapalme, J., Esquibet, M., Sabeh, M., Rott, M., Overmars, H., Finkers-Tomczak, A., Smant, G., Koutsovoulos, G., Blok, V., Mantelin, S., Cock, P. J. A., Phillips, W., Henrissat, B., Urwin, P. E., Blaxter, M., and Jones, J. T. 2016. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biology 17:124.

Kikuchi, T., Cotton, J. A., Dalzell, J. J., Hasegawa, K., Kanzaki, N., McVeigh, P., Takanashi, T., Tsai, I. J., Assefa, S. A., and Cock, P. J., Otto, T. D., Hunt, M., Reid, A. J., Sanchez-Flores, A., Tsuchihara, K., Yokoi, T., Larsson, M. C., Miwa, J., Maule, A. J., Sahashi, N., Jones, J. T., and Berriman, M. 2011. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLOS Pathogens 7:e1002219.

Lunt, D. H., Kumar, S., Koutsovoulos, G., and Blaxter, M. L. 2014. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ 2:e356.

Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T. D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B. R., Thomas, V. P., and Windham, E. 2008. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America 105:14802–14807.

Phillips, W. S., Howe, D. K., Brown, A. M. V., Eves-van den Akker, S., Dettwyler, L., Peetz, A. B., Debver, D. R., and Zasada, I. A. 2017. The Draft Genome of Globodera ellingtonae. Journal of Nematology 49:127–128.

Szitenberg, A., Salazar-Jaramillo, L., Blok V. C., Laetsch, D. R., Joseph, S., Williamson, V. M., Blaxter, M. L., and Lunt, D. H. 2017. Comparative genomics of apomictic root-knot nematodes: Hybridization, ploidy, and dynamic genome change. Genome Biology and Evolution 9:2844–2861.

Zheng, J., Peng, D., Chen, L., Liu, H., Chen, F., Xu, M., Ju, S., Ruan, L., and Sun, M. 2016. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes. Proceedings of the Royal Society B: Biological Sciences 283:20160942.

References


  1. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., and Pyshkin, A.V.. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455-477.
    [CROSSREF]
  2. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P.F.. 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69: 313-319.
    [CROSSREF]
  3. Besnard, G., Jühling, F., Chapuis, É., Zedane, L., Lhuillier, É., Mateille, T., and Bellafiore, S.. 2014. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. Comptes Rendus Biologies 337: 295-301.
    [CROSSREF]
  4. Borodovsky, M., and McIninch, J.. 1993. Genmark: Parallel gene recognition for both DNA strands. Computers and Chemistry 17: 123-133.
    [CROSSREF]
  5. Dutta, T.K., Ganguly, A.K., and Gaur, H.S.. 2012. Global status of rice root-knot nematode, Meloidogyne graminicola. African Journal of Microbiology Research 32: 6016-6021.
  6. Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., Yabana, M., Harada, M., Nagayasu, E., and Maruyama, H.. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Research 24: 1384-1395.
    [CROSSREF]
  7. Kikuchi, T., Eves-van den Akker, S., and Jones, J.T.. 2017. Genome evolution of plant-parasitic nematodes. Annual Review of Phytopathology 55: 333-354.
    [CROSSREF]
  8. Lapp, N.A., and Triantaphyllou, A.C.. 1972. Relative DNA content and chromosomal relationships of some Meloidogyne, Heterodera, and Meloidodera spp. (Nematoda: Heteroderidae). Journal of Nematology 4: 287-291.
  9. Laslett, D., and Canbäck, B.. 2008. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24: 172-175.
    [CROSSREF]
  10. Li, L., Stoeckert, C.J., and Roos, D.S.. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research 13: 2178-2189.
    [CROSSREF]
  11. Mantelin, S., Bellafiore, S., and Kyndt, T.. 2016. Meloidogyne graminicola: A major threat to rice agriculture. Molecular Plant Pathology 18: 3-15.
    [CROSSREF]
  12. Netscher, C., and Erlan, X.. 1993. A root-knot nematode, Meloidogyne graminicola, parasitic on rice in Indonesia. Afro-Asian. Journal of Nematology 3: 90-95.
  13. Parra, G., Bradnam, K., and Korf, I.. 2007. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061-1067.
    [CROSSREF]
  14. Patel, R.K., and Jain, M.. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLOS ONE 7: e30619.
    [CROSSREF]
  15. Prot, J.C., Villammeva, L.M., and Gergon, E.B.. 1994. The potential of increased nitrogen supply to mitigate growth and yield reductions of upland rice cultivar UPL RiI-5 caused by Meloidogyne graminicola. Fundamental and Applied Nematology 17: 445-454.
  16. Pryszcz, L.P., and Gabaldón, T.. 2016. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Research 44: e113.
    [CROSSREF]
  17. Rice, P., Longden, I., and Bleasby, A.. 2000. EMBOSS: The European molecular biology open software suite. Trends in Genetics 16: 276-277.
    [CROSSREF]
  18. Sun, L., Zhuo, K., Lin, B., Wang, H., and Liao, J.. 2014. The complete mitochondrial genome of Meloidogyne graminicola (Tylenchina): A unique gene arrangement and its phylogenetic implications. PLOS ONE 9: e98558.
    [CROSSREF]
XML PDF Share

FIGURES & TABLES

REFERENCES

  1. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., and Pyshkin, A.V.. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455-477.
    [CROSSREF]
  2. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P.F.. 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69: 313-319.
    [CROSSREF]
  3. Besnard, G., Jühling, F., Chapuis, É., Zedane, L., Lhuillier, É., Mateille, T., and Bellafiore, S.. 2014. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. Comptes Rendus Biologies 337: 295-301.
    [CROSSREF]
  4. Borodovsky, M., and McIninch, J.. 1993. Genmark: Parallel gene recognition for both DNA strands. Computers and Chemistry 17: 123-133.
    [CROSSREF]
  5. Dutta, T.K., Ganguly, A.K., and Gaur, H.S.. 2012. Global status of rice root-knot nematode, Meloidogyne graminicola. African Journal of Microbiology Research 32: 6016-6021.
  6. Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., Yabana, M., Harada, M., Nagayasu, E., and Maruyama, H.. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Research 24: 1384-1395.
    [CROSSREF]
  7. Kikuchi, T., Eves-van den Akker, S., and Jones, J.T.. 2017. Genome evolution of plant-parasitic nematodes. Annual Review of Phytopathology 55: 333-354.
    [CROSSREF]
  8. Lapp, N.A., and Triantaphyllou, A.C.. 1972. Relative DNA content and chromosomal relationships of some Meloidogyne, Heterodera, and Meloidodera spp. (Nematoda: Heteroderidae). Journal of Nematology 4: 287-291.
  9. Laslett, D., and Canbäck, B.. 2008. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24: 172-175.
    [CROSSREF]
  10. Li, L., Stoeckert, C.J., and Roos, D.S.. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research 13: 2178-2189.
    [CROSSREF]
  11. Mantelin, S., Bellafiore, S., and Kyndt, T.. 2016. Meloidogyne graminicola: A major threat to rice agriculture. Molecular Plant Pathology 18: 3-15.
    [CROSSREF]
  12. Netscher, C., and Erlan, X.. 1993. A root-knot nematode, Meloidogyne graminicola, parasitic on rice in Indonesia. Afro-Asian. Journal of Nematology 3: 90-95.
  13. Parra, G., Bradnam, K., and Korf, I.. 2007. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061-1067.
    [CROSSREF]
  14. Patel, R.K., and Jain, M.. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLOS ONE 7: e30619.
    [CROSSREF]
  15. Prot, J.C., Villammeva, L.M., and Gergon, E.B.. 1994. The potential of increased nitrogen supply to mitigate growth and yield reductions of upland rice cultivar UPL RiI-5 caused by Meloidogyne graminicola. Fundamental and Applied Nematology 17: 445-454.
  16. Pryszcz, L.P., and Gabaldón, T.. 2016. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Research 44: e113.
    [CROSSREF]
  17. Rice, P., Longden, I., and Bleasby, A.. 2000. EMBOSS: The European molecular biology open software suite. Trends in Genetics 16: 276-277.
    [CROSSREF]
  18. Sun, L., Zhuo, K., Lin, B., Wang, H., and Liao, J.. 2014. The complete mitochondrial genome of Meloidogyne graminicola (Tylenchina): A unique gene arrangement and its phylogenetic implications. PLOS ONE 9: e98558.
    [CROSSREF]

EXTRA FILES

COMMENTS