First report of Longidorus mindanaoensis Coomans, De Ley, Jimenez and De Ley, 2012 (Nematoda: Longidoridae) From a Mangrove Forest in Vietnam

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

13
Reader(s)
42
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

First report of Longidorus mindanaoensis Coomans, De Ley, Jimenez and De Ley, 2012 (Nematoda: Longidoridae) From a Mangrove Forest in Vietnam

Thi Duyen Nguyen / Huu Tien Nguyen / Thi Mai Linh Le / Neriza Nobleza / Quang Phap Trinh *

Keywords : Ca Mau, Dat Mui, deepwater, marine nematode, needle nematode, Ngoc Hien, plant-parasitic nematode, saline sea sediment

Citation Information : Journal of Nematology. Volume 51, Pages 1-5, DOI: https://doi.org/10.21307/jofnem-2019-064

License : (CC-BY-4.0)

Received Date : 18-June-2019 / Published Online: 17-September-2019

ARTICLE

ABSTRACT

Longidorus mindanaoensis was recovered from a mangrove forest in Vietnam. The recovered population is in general morphological agreement with the type population, and the characters of pharyngeal bulb, i.e. the same unique pattern of pharyngeal glands nuclei as well as the lip region morphology, amphidial fovea shape and size and position of vulva corroborated its identity. Molecular studies of the recovered population using D2–D3 expansion segments of large subunit ribosomal DNA (LSU rDNA D2–D3) revealed the D2–D3 sequence of recovered population is 99.6% similar to the sequence of the type population. A new morphometric range for body size was recorded for the species based upon present Vietnamese population, and present study emphasized the diversity of Longidorus spp. in Vietnam could be higher than previously assumed.

Graphical ABSTRACT

Longidorus spp. (needle nematodes) are migratory ectoparasitic nematodes. Besides their direct damages by direct feeding from root cells, some species could also transmit plant pathogenic viruses (Taylor and Brown, 1997). Currently, only one valid species (Longidorus elongatus (de Man, 1876) Micoletzky, 1927) has been reported in association with peanut (Arachis hypogaea L.) from Vietnam.

During this study, a population of the genus Longidorus was recovered from saline sea sediments in a mangrove forest in Vietnam (GPS coordinates N: 8°38′09.902′; E: 104°44′31.178′). Nematodes were extracted from soil samples using the tray method (Whitehead and Hemming, 1965). The specimens were killed, fixed in TAF, and transferred to glycerin according to Seinhorst (1959). The measurements and preparing the microphotographs were performed using a Carl Zeiss Axio Lab.A1 light microscope equipped with a ZEISS Axiocam ERc5s digital camera (Nguyen et al., 2017). For molecular phylogenetic analysis, the D2–D3 expansion segments of LSU rDNA were amplified using the primers D2A and D3B (5′-ACAAGTACCGTGGGGAAAGTTG-3′ and 5′-TCGGAAGGAACCAGCTACTA-3′) (De Ley et al., 1999). The newly obtained sequence was compared with previously submitted sequences into the GenBank database (Altschul et al., 1997) using BLAST search. Multiple alignments were made using MUSCLE and Modeltest was used to select the best fit model in MEGA 6 (Tamura et al., 2013). MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001) in Geneious R11 (www.geneious.com) was used to infer the Bayesian phylogenetic tree with 106 generations of Markov chains (4 runs, 20% burn-in) (Nguyen et al., 2019).

The morphological comparisons revealed the studied population belongs to Longidorus mindanaoensis (Coomans et al., 2012) that was recovered from the same habitat in the Philippines by Coomans et al. (2012). The morphological characters and measurements of the Vietnamese population of L. mindanaoensis (Fig. 1, Table 1) are in agreement with the original description of the species by Coomans et al. (2012). Some unique morphological and morphometric characters like the shape of lip region and amphidial fovea, the characters of the esophageal bulb (its small size and shape as well as the arrangement of glands nuclei) and the position of vulva delimiting the species well corroborated the identity of the species. However, new morphometric data ranges were recorded for the species as follows: the females and males of the presently studied population of L. mindanaoensis from Vietnam are smaller than the type population (Table 1), and therefore, related indices, including a, b are also relatively smaller compared with the data given for the type population. The present observation is in accordance with the results of Coomans et al. (2012) and Archidona-Yuste et al. (2016) showing the body length of Longidorus spp. could be highly variable (Coomans et al., 2012; Archidona-Yuste et al., 2016).

Table 1.

Measurements of Longidorus mindanaoensis (Coomans et al., 2012) from Vietnam and the Philippines.

10.21307_jofnem-2019-064-t001.jpg
Figure 1:

Figure 1: Longidorus mindanaoensis (Coomans et al., 2012) from Vietnam. (A–F) Female. (A) Esophageal region; (B) Anterior region; (C) Posterior region; (E) Vulval region; (F) Vulva region, ventral view. (D) Male posterior region. (Scale: (A) 50 µm; (B–F) 20 µm).

10.21307_jofnem-2019-064-f001.jpg

The D2–D3 sequence of our population of L. mindanaoensis (accession number: MN071244) from Vietnam was 805 bp long. It had a 99.6% identity to the same sequence of the type population and three different nucleotides were detected between both populations. This variation could be explained by intraspecies variation in this genomic region and is recently observed for several other longidorids and trichodorids (Pedram et al., 2017; Fouladvand et al., 2019). It had a 69.3 to 80.7% identity with sequences available in the GenBank database (154-265 different nucleotides). In the inferred Bayesian phylogenetic tree, the newly generated sequence and the original sequence of the type population formed a basal clade to some other selected sequences of the genus (Fig. 2). This genomic fragment has already used in molecular phylogenetic analyses of longidorids and has successfully delimited several species belonging to cryptic complexes (Pedram et al., 2012; Gutiérrez-Gutiérrez et al., 2013; Pedram et al., 2017; Zhao et al., 2017; Fouladvand et al., 2019).

Figure 2:

Figure 2: Bayesian phylogenetic tree generated using D2–D3 expansion segments of Longidorus mindanaoensis (Coomans et al., 2012) from Vietnam using Xiphinema index (Thorne and Allen, 1950) and Xiphinema diversicaudatum (Micoletzky, 1927) (Thorne, 1939) as outgroup taxa under the GTR+G evolutionary model.

10.21307_jofnem-2019-064-f002.jpg

Acknowledgments

This research was supported by the Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology (project code: VAST. ĐA47.12/16-19).

References


  1. Altschul, S. F. , Madden, T. L. , Schäffer, A. A. , Zhang, J. , Zhang, Z. , Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–402.
  2. Archidona-Yuste, A. , Navas-Cortés, J. A. , Cantalapiedra-Navarrete, C. , Palomares-Rius, J. E. and Castillo, P. 2016. Unravelling the biodiversity and molecular phylogeny of needle nematodes of the genus Longidorus (Nematoda: Longidoridae) in olive and a description of six new species. PLoS One 11: e0147689.
  3. Coomans, A. , De Ley, I. T. , Jimenez, L. A. and De Ley, P. 2012. Morphological, molecular characterisation and phylogenetic position of Longidorus mindanaoensis n. sp. (Nematoda: Longidoridae) from a Philippine Avicennia mangrove habitat. Nematology 14:285–307.
  4. De Ley, P. , Felix, M. A. , Frisse, L. , Nadler, S. , Sternberg, P. and Thomas, W. K. 1999. Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1:591–612.
  5. De Man, J. G. , 1876. Onderzoekingen over vrij in de aarde levende Nematoden. Tijdschrift der Nederlandsche Dierkundige Vereeniging Ver. 2:78–196.
  6. Fouladvand, Z. M. , Pourjam, E. , Castillo, P. and Pedram, M. 2019. Genetic diversity, and description of a new dagger nematode, Xiphinema afratakhtehnsis sp. nov., (Dorylaimida: Longidoridae) in natural forests of southeastern Gorgan, northern Iran. PLoS ONE 14:e0214147.
  7. Gutiérrez-Gutiérrez, C. , Cantalapiedra-Navarrete, C. , Montes-Borrego, M. , Palomares-Rius, J. E. and Castillo, P. 2013. Molecular phylogeny of the nematode genus Longidorus (Nematoda: Longidoridae) with description of three new species. Zoological Journal of the Linnean Society 167:473–500.
  8. Huelsenbeck, J. P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–5.
  9. Micoletzky, H. 1927. Neue und seltene freilebende Nematoden aus dem Wolgagebiet (Kama). Zoologischer Anzeiger 73:112–23.
  10. Nguyen, H. T. , P., T. Q. , Couvreur, M. , Singh, P. R. , Decraemer, W. and Bert, W. 2019. Description of Rotylenchus rhomboides n. sp. and a Belgian population of Rotylenchus buxophilus (Tylenchomorpha: Hoplolaimidae). Journal of Nematology 51:1–20.
  11. Nguyen, T. D. , Le, T. M. L. , Nguyen, H. T. , Nguyen, T. a. D. , Liébanas, G. and Trinh, Q. P. 2017. Morphological and molecular characteristics of Pratylenchus haiduongensis sp. n., a new species of root-lesion nematode associated with carrot in Vietnam. Journal of Nematology 49:276–85.
  12. Pedram, M. , Pourjam, E. , Namjou, S. , R., A. M. , Cantalapiedra-Navarrete, C. , Liébanas, G. , Palomares-Rius, J. E. and Castillo, P. 2012. Molecular and morphological characterisation of Paralongidorus iranicus n. sp. and Paralongidorus bikanerensis (Lal & Mathur,1987) Siddiqi, Baujard & Mounport, 1993 (Nematoda: Longidoridae) from Iran. Nematology 14:427–43.
  13. Pedram, M. , Roshan-Bakhsh, A. , Pourjam, E. , Atighi, M. R. , Decraemer, W. and Bagheri, A. 2017. Additional data on Iranian trichodorids (Triplonchida: Trichodoridae) and first record of a rare species, Trichodorus variabilis Roca, 1998. Nematology 19: 121–9.
  14. Seinhorst, J. W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–9.
  15. Tamura, K. , Stecher, G. , Peterson, D. , Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30:2725–9.
  16. Taylor, C. A. and Brown, D. J. F. 1997. Nematode vectors of plant viruses, CABI, Wallingford, UK.
  17. Thorne, G. and Allen, M. W. 1950. Paratylenchus hamatus n. sp, and Xiphinema index n. sp., two nematodes associated with fig roots, with a note on Paratylenchus anceps . Proceedings of the Helminthological Society of Washington 17:27–35.
  18. Thorne, G. 1939. A monograph of the nematodes of the superfamily Dorylaimoidea. Capita Zool 8:1–261.
  19. Whitehead, A. G. and Hemming, J. R. 1965. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annales of Applied Biology 55:25–38.
  20. Zhao, L. , Ye, W. , Maria, M. , Pedram, M. and Gu, J. 2017. Xiphinema japonicum n. sp. (Nematoda: Longidorinae) from the rhizosphere of Japanese podocarpus macrophyllus (Thunb.), a cryptic species related to Xiphinema bakeri Williams, 1961. Journal of Nematology 49:404–17.
XML PDF Share

FIGURES & TABLES

Figure 1:

Figure 1: Longidorus mindanaoensis (Coomans et al., 2012) from Vietnam. (A–F) Female. (A) Esophageal region; (B) Anterior region; (C) Posterior region; (E) Vulval region; (F) Vulva region, ventral view. (D) Male posterior region. (Scale: (A) 50 µm; (B–F) 20 µm).

Full Size   |   Slide (.pptx)

Figure 2:

Figure 2: Bayesian phylogenetic tree generated using D2–D3 expansion segments of Longidorus mindanaoensis (Coomans et al., 2012) from Vietnam using Xiphinema index (Thorne and Allen, 1950) and Xiphinema diversicaudatum (Micoletzky, 1927) (Thorne, 1939) as outgroup taxa under the GTR+G evolutionary model.

Full Size   |   Slide (.pptx)

REFERENCES

  1. Altschul, S. F. , Madden, T. L. , Schäffer, A. A. , Zhang, J. , Zhang, Z. , Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–402.
  2. Archidona-Yuste, A. , Navas-Cortés, J. A. , Cantalapiedra-Navarrete, C. , Palomares-Rius, J. E. and Castillo, P. 2016. Unravelling the biodiversity and molecular phylogeny of needle nematodes of the genus Longidorus (Nematoda: Longidoridae) in olive and a description of six new species. PLoS One 11: e0147689.
  3. Coomans, A. , De Ley, I. T. , Jimenez, L. A. and De Ley, P. 2012. Morphological, molecular characterisation and phylogenetic position of Longidorus mindanaoensis n. sp. (Nematoda: Longidoridae) from a Philippine Avicennia mangrove habitat. Nematology 14:285–307.
  4. De Ley, P. , Felix, M. A. , Frisse, L. , Nadler, S. , Sternberg, P. and Thomas, W. K. 1999. Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1:591–612.
  5. De Man, J. G. , 1876. Onderzoekingen over vrij in de aarde levende Nematoden. Tijdschrift der Nederlandsche Dierkundige Vereeniging Ver. 2:78–196.
  6. Fouladvand, Z. M. , Pourjam, E. , Castillo, P. and Pedram, M. 2019. Genetic diversity, and description of a new dagger nematode, Xiphinema afratakhtehnsis sp. nov., (Dorylaimida: Longidoridae) in natural forests of southeastern Gorgan, northern Iran. PLoS ONE 14:e0214147.
  7. Gutiérrez-Gutiérrez, C. , Cantalapiedra-Navarrete, C. , Montes-Borrego, M. , Palomares-Rius, J. E. and Castillo, P. 2013. Molecular phylogeny of the nematode genus Longidorus (Nematoda: Longidoridae) with description of three new species. Zoological Journal of the Linnean Society 167:473–500.
  8. Huelsenbeck, J. P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–5.
  9. Micoletzky, H. 1927. Neue und seltene freilebende Nematoden aus dem Wolgagebiet (Kama). Zoologischer Anzeiger 73:112–23.
  10. Nguyen, H. T. , P., T. Q. , Couvreur, M. , Singh, P. R. , Decraemer, W. and Bert, W. 2019. Description of Rotylenchus rhomboides n. sp. and a Belgian population of Rotylenchus buxophilus (Tylenchomorpha: Hoplolaimidae). Journal of Nematology 51:1–20.
  11. Nguyen, T. D. , Le, T. M. L. , Nguyen, H. T. , Nguyen, T. a. D. , Liébanas, G. and Trinh, Q. P. 2017. Morphological and molecular characteristics of Pratylenchus haiduongensis sp. n., a new species of root-lesion nematode associated with carrot in Vietnam. Journal of Nematology 49:276–85.
  12. Pedram, M. , Pourjam, E. , Namjou, S. , R., A. M. , Cantalapiedra-Navarrete, C. , Liébanas, G. , Palomares-Rius, J. E. and Castillo, P. 2012. Molecular and morphological characterisation of Paralongidorus iranicus n. sp. and Paralongidorus bikanerensis (Lal & Mathur,1987) Siddiqi, Baujard & Mounport, 1993 (Nematoda: Longidoridae) from Iran. Nematology 14:427–43.
  13. Pedram, M. , Roshan-Bakhsh, A. , Pourjam, E. , Atighi, M. R. , Decraemer, W. and Bagheri, A. 2017. Additional data on Iranian trichodorids (Triplonchida: Trichodoridae) and first record of a rare species, Trichodorus variabilis Roca, 1998. Nematology 19: 121–9.
  14. Seinhorst, J. W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–9.
  15. Tamura, K. , Stecher, G. , Peterson, D. , Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30:2725–9.
  16. Taylor, C. A. and Brown, D. J. F. 1997. Nematode vectors of plant viruses, CABI, Wallingford, UK.
  17. Thorne, G. and Allen, M. W. 1950. Paratylenchus hamatus n. sp, and Xiphinema index n. sp., two nematodes associated with fig roots, with a note on Paratylenchus anceps . Proceedings of the Helminthological Society of Washington 17:27–35.
  18. Thorne, G. 1939. A monograph of the nematodes of the superfamily Dorylaimoidea. Capita Zool 8:1–261.
  19. Whitehead, A. G. and Hemming, J. R. 1965. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annales of Applied Biology 55:25–38.
  20. Zhao, L. , Ye, W. , Maria, M. , Pedram, M. and Gu, J. 2017. Xiphinema japonicum n. sp. (Nematoda: Longidorinae) from the rhizosphere of Japanese podocarpus macrophyllus (Thunb.), a cryptic species related to Xiphinema bakeri Williams, 1961. Journal of Nematology 49:404–17.

EXTRA FILES

COMMENTS