Using Lord of the Flies to Teach Social Networks

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Social Structure

International Network for Social Network Analysis

Subject: Social Sciences

GET ALERTS

eISSN: 1529-1227

DESCRIPTION

59
Reader(s)
136
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Archive
Volume 21 (2020)
Volume 20 (2019)
Volume 19 (2018)
Volume 18 (2017)
Volume 17 (2016)
Volume 16 (2015)
Volume 15 (2014)
Volume 14 (2013)
Volume 13 (2012)
Volume 12 (2011)
Volume 11 (2010)
Volume 10 (2009)
Related articles

VOLUME 16 , ISSUE 1 (December 2015) > List of articles

Using Lord of the Flies to Teach Social Networks

Jimi Adams

Citation Information : Journal of Social Structure. Volume 16, Issue 1, Pages 1-21, DOI: https://doi.org/10.21307/joss-2019-017

License : (CC BY-NC 4.0)

Published Online: 13-August-2019

ARTICLE

ABSTRACT

Lord of the Flies is commonly assigned reading for high school and college students. The novel about shipwrecked boys is often analyzed thematically to examine how the boys’ perceived isolation on the island effects their attitudes and behavior. However, what is similarly apparent is that the society they develop while on the island establishes certain patterns, and is governed by collective rules (some more explicit than others). Here I demonstrate how those behavioral patterns and norms are useful for interpreting the concepts and analytic tools found in social network literature. I describe how I used the novel as a “capstone” project in four sections of an undergraduate Social Networks course. This demonstrates how students’ readings of the text revealed several common families of social network measures leveraged in the book’s plot.

 

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Adams, J. (2015). Glee’s McKinley High: Following Middle America’s Sexual Taboos. Network Science 3, 2: 293-295.

 

Adams, J., Moody, J., and Morris, M. (2013). Sex, Drugs, and Race: How Behaviors Differentially Contribute to Sexually Transmitted Infection Risk Network Structure. American Journal of Public Health 103, 2: 322-329.

 

Adams, J., Moody, J., Muth, S. Q., and Morris, M. (2012). Quantifying the Benefits of Link-Tracing Designs for Partnership Network Studies. Field Methods 24, 2: 175-193.

 

Barabasi, A.-L. (2009). Scale-Free Networks: A Decade and Beyond. Science 325: 412-413.

 

Bender-deMoll, S. (2013). ndtv: Network Dynamic Temporal Visualization Package. 

 

Bojanowski, M. and Corten, R. (2014). Measuring Segregation in Social Networks. Social Networks 39: 14-32.

 

Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology 92: 1170-1182.

 

Bonacich, P. and Lloyd, P. (2001). Eigenvector-like Measures of Centrality for Asymmetric Relations. Social Networks 23, 3: 191-201. 

 

Borgatti, S. P. and Everett, M. G. (1992). Notions of Position in Social Network Analysis. Sociological Methodology 22: 1-35. 

 

Borgatti, S. P. and Everett, M. G. (1997). Network Analysis of 2-Mode Data. Social Networks 19: 243269. 

 

Borgatti, S. P. and Everett, M. G. (2006). A Graph-Theoretic Perspective on Centrality. Social Networks 28: 466-484. 

 

Borgatti, S. P., Everett, M. G., and Shirey, P. R. (1990). LS Sets, Lambda Sets, and Other Cohesive Subsets. Social Networks 12: 337-357. 

 

Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine. In Proceedings of the 7th World-Wide Web Conference. Brisbane, Australia. 

 

Britton, J., Burgess, T., Martin, N., McLeod, A., and Rosen, H. (1975). The Development of Writing Abilities. MacMillan Education, London, England. 

 

Burt, R. S. (2001). Structural Holes versus Network Closure as Social Capital. Pp. 31-56 in Social Capital: Theory and Research. Aldine de Gruyter. 

 

Butts, C. T. (2008). A Relational Event Framework for Social Action. Sociological Methodology 38, 1: 155-200.

 

Cartwright, D. and Harary, F. (1956). Structural Balance: A Generalization of Heider’s Theory. Psychological Review 63: 277-293. 

 

Centola, D. (2010). The Spread of Behavior in an Online Social Network Experiment. Science 329, 5996: 1194-1197. 

 

Collett, J. L., Kelly, S., and Sobolewski, C. (2010). Using Remember the Titans to Teach Theories of Conflict Reduction. Teaching Sociology 38, 3: 258-266. 

 

Darrow, W. W., Potterat, J. J., Rothenberg, R. B., Woodhouse, D. E., Muth, S. Q., and Klovdahl, A. S. (1999). Using Knowledge of Social Networks to Prevent Human Immunodeficiency Virus Infections: The Colorado Springs Study. Sociological Focus 32: 143-158.

 

Eagle, N., Pentland, A. S., and Lazer, D. (2009). Inferring Friendship Network Structure by Using Mobile Phone Data. Proceedings of the National Academy of Science 106, 36: 15274-15278. 

 

Festinger, L. (1957). A Theory of Cognitive Balance. Row, Peterson and Co., Evanston, IL. 

 

Fortunato, S. (2010). Community Detection in Graphs. Physics Reports 486: 75-174. 

 

Freeman, L. C. (1979). Centrality in Social Networks: Conceptual Clarification. Social Networks 1: 215-239. 

 

Freeman, L. C. (1992). The Sociological Concept of Group: An Empirical-Test of 2 Models. American Journal of Sociology 98, 1: 152-166.

 

Freeman, L. C. (2000). See You in the Funny Papers: Cartoons and Social Networks. Connections 23, 1: 32-42. 

 

Freeman, L. C. (2004). The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver, BC. 

 

Golding, W. (1954). Lord of the Flies. Perigree Books.

 

Granovetter, M. (1973). The Strength of Weak Ties. American Journal of Sociology 78, 6: 1360-1380.

 

Hargittai, E. (2010). Digital na(t)ives? Variation in Internet skills and Uses Among Members of the ‘Net Generation. Sociological Inquiry 80, 1: 92-113.

 

Holland, P. W. and Leinhardt, S. (1970). A Method for Detecting Structure in Sociometric Data. American Journal of Sociology 70: 492-513.

 

Hummon, N. P. and Doreian, P. (2003). Some Dynamics of Social Balance Processes: Bringing Heider Back into Balance Theory. Social Networks 25: 17-49. 

 

Knoke, D. and Yang, S. (2007). Social Network Analysis, Volume 154 of Quantitative Applications in the Social Sciences. Sage. 

 

Kossinets, G. and Watts, D. J. (2006). Empirical Analysis of an Evolving Social Network. Science 311, 5757: 88—90. 

 

Laumann, E. O., Marsden, P. V., and Prensky, D. (1994). The Boundary Specification Problem in Network Analysis. In Research Methods in Social Network Analysis, edited by L.C. Freeman, D.R. White, and A.K. Romney. New Brunswick, NJ: Transaction Publishers. 

 

Marsden, P. V. (2011). Survey Methods for Network Data. Chapter 5 in The Sage Handbook of Social Network Analysis, edited by John Scott and Peter J. Carrington. Los Angeles, CA: Sage.

 

McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology 27: 415-444. 

 

Milgram, S. (1967). The Small World Problem. Psychology Today 1:61-67.

 

Moody, J. (1998). Matrix Methods for Calculating the Triad Census. Social Networks 20, 4: 291-299. 

 

Moody, J. (2009). Network Dynamics. Chapter 19 in The Sage Handbook of Social Network Analysis, edited by John Scott and Peter J. Carrington. Los Angeles, CA: Sage.

 

Moody, J. and White, D. R. (2003). Structural Cohesion and Embeddedness: A Hierarchical Concept of Social Groups. American Sociological Review 68, 1: 103-127. 

 

Morris, M. (2004). Network Epidemiology: A Handbook for Survey Design and Data Collection. Oxford University Press, London. 

 

Mouw, T. and Verdery, A. M. (2012). Network Sampling with Memory: A Proposal for More Efficient Sampling from Social Networks. Sociological Methodology 42, 1: 206-256. 

 

Neal, Z. (2014). The Backbone of Bipartite Projections: Inferring Relationships from Co-authorship, Co-sponsorship, Co-attendance and other Co-behaviors. Social Networks 39: 84-97. 

 

Porter, M. A., Onnela, J.-P., and Mucha, P. J. (2009). Communities in Networks. Notices of the AMS 56, 9: 1082-1097, 1164-1166. 

 

R, Development Core Team. (2006). R: A Language and Environment for Statistical Computing.

 

Salganik, M. J. and Heckathorn, D. D. (2004). Sampling and Estimation in Hhidden Populations

Using Respondent Driven Sampling. Sociological Methodology 34: 193-240.

 

Schaefer, D., Light, J. M., Fabes, R. A., Hanish, L. D., and Martin, C. L. (2010). Fundamental Principles of Network Formation among Preschool Children. Social Networks 32: 61-71. 

 

Schaefer, D. R., Kornienko, O., and Fox, A. M. (2011). Misery Does Not Love Company: Network Selection Mechanisms and Depression Homophily. American Sociological Review 75, 5: 764-785.

 

Scott, J. and Carrington, P. J. (2011). The Sage Handbook of Social Network Analysis. Sage. 

 

Steglich, C., Snijders, T. A. B., and Pearson, M. (2010). Dynamic Networks and Behavior: Separating Selection from Influence. Sociological Methodology 40, 1: 329-393. 

 

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Volume 8 of Structural Analysis in the Social Sciences. Cambridge University Press, New York. 

 

Wellman, B. (1988). Structural Analysis: From Method and Metaphor to Theory and Substance. Pp. 19-61 in Social Structures: A Network Approach. Volume 2 of Structural Analysis in the Social Sciences, edited by Barry Wellman and S. D. Berkowitz. Cambridge University Press. 

 

Wellman, B., Haase, A. Q., Witte, J., and Hampton, K. (2001). Does the Internet Increase, Decrease or Supplement Social Capital? Social Networks, Participation, and Community Commitment. American Behavioral Scientist 45: 436-455. 

 

White, H. C., Boorman, S. A., and Breiger, R. L. (1976). Social Structure from Multiple Networks 1: Blockmodels of Roles and Positions. American Journal of Sociology 81: 730-780. 

EXTRA FILES

COMMENTS