Parallel Arc Diagrams: Visualizing Temporal Interactions

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Social Structure

International Network for Social Network Analysis

Subject: Social Sciences

GET ALERTS

eISSN: 1529-1227

DESCRIPTION

2
Reader(s)
7
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Archive
Volume 20 (2019)
Volume 19 (2018)
Volume 18 (2017)
Volume 17 (2016)
Volume 16 (2015)
Volume 15 (2014)
Volume 14 (2013)
Volume 13 (2012)
Volume 12 (2011)
Volume 11 (2010)
Volume 10 (2009)
Related articles

VOLUME 12 , ISSUE 1 (December 2011) > List of articles

Parallel Arc Diagrams: Visualizing Temporal Interactions

Peter Hoek

Keywords : Dynamic Network, Visualization, Patterns of Interaction

Citation Information : Journal of Social Structure. Volume 12, Issue 1, Pages 1-25, DOI: https://doi.org/10.21307/joss-2019-036

License : (CC BY-NC 4.0)

Published Online: 13-January-2020

ARTICLE

ABSTRACT

This paper introduces a new computer-based visualization method, the parallel arc diagram (PAD), which is capable of uniquely representing 2-mode temporal relationships in a manner that assists in highlighting simple features of the network. The PAD approach relies on a computer’s ability to render link lines adjacent to each other with orderly precision, resulting in features that facilitate preattentive processing of simple network characteristics and providing the ability to discern patterns of interactions over time. PADs supplement existing methods such as node-link diagrams by offering a simple alternative visualization without the computational complexity of graph layout algorithms and the additional issues that animation introduces. This paper subjectively evaluates the PAD approach using low level task taxonomies developed for assessing adjacency matrix and node-link visualization effectiveness. We argue based on those taxonomies that the PAD approach is as effective or in some cases more effective than existing approaches except for tasks requiring the identification of structural groups or middle-man nodes. This paper also demonstrates how the PAD approach can be utilized in a software application. The TIPAD (Temporal Interactive Parallel Arc Diagram) uses character participation in movie scenes as a test-bed for exploring social interactions over time and provides the ability to compare a PAD based visualization with traditional visualizations of the same network.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Alexander, M. (2005). Using the Bipartite Line Graph to Visualize 2-Mode Social Networks. North American Association for Computational Social and Organizational Science (NAACSOS). Indiana: Notre Dame.

Alexandre, D. S. and J. M. R. S. Tavares (2010). Introduction of Human Perception in Visualization. FEUP - Artigo em Revista Internacional.

Battista, G. D., P. Eades et al. (1998). Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall.

Bender-deMoll, S. and D. A. McFarland (2006). "The Art and Science of Dynamic Network Visualization." Journal of Social Structure 7 (2). Available: http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/ [December 2011].

Borgatti, S. P., M. G. Everett et al. (2002). UCINET 6 for Windows: Software for Social Network Analysis. Harvard Analytic Technologies.

Brandes, U., J. Raab et al. (2001). "Exploratory Network Visualization: Simultaneous Display of Actor Status and Connections." Journal of Social Structure 2 (4). Available: http://www.cmu.edu/joss/content/articles/volume2/BrandesRaabWagner.html [December 2011].

Cole, H. R. and J. H. Haag (1988). The Complete Guide to Standard Script Formats: The Screenplay. California: CMC Publishing.

Cui, W. (2007). A Survey on Graph Visualization. PhD Qualifying Exam (PQE) Report. Hong Kong, Computer Science Department, Hong Kong University of Science and Technology.

Davis, A., B. Gardner et al. (1941). Deep South, Chicago University Press.

Donath, J., K. Karahalios et al. (1999). Visualizing Conversation. Thirty-Second Annual Hawaii International Conference on Systems Sciences, Maui, Hawaii, IEEE.

Dwyer, T., B. Lee et al. (2009). "A Comparison of User-Generated and Automatic Graph Layouts." IEEE Transactions on Visualization and Computer Graphics 15 (6).

Freeman, L. C. (2000). "Visualizing Social Networks." Journal of Social Structure 1 (1). Available: http://www.cmu.edu/joss/content/articles/volume1/Freeman.html [December 2011].

Garey, M. R. and D. S. Johnson (1983). "Crossing Number is NP-Complete." SIAM Journal on Algebraic and Discrete Methods 4: 312-216.

Ghoniem, M., J. D. Fekete et al. (2005). "On the Readability of Graphs Using Node-link and Matrix-based Representations: A Controlled Experiment and Statistical Analysis." Information Visualization 4 (2): 114-135.

Gloor, P. and Y. Yhao (2004). TeCFlow: A Temporal Communication Flow Visualizer for Social Networks Analysis. ACM CSCW Workshop on Social Networks, Chicago.

Gloor, P. A., R. Laubacher et al. (2004). Temporal Visualization and Analysis of Social Networks. North American Association for Computational Social and Organizational Science (NAACSOS).

Gloor, P. A., S. Niepel et al. (2006). Identifying Potential Suspects by Temporal Link Analysis, MIT CCS.

Goud, R. (2006). "Visualization of File Relations in Software Systems with Adjacency Matrices." Department of Mathematics and Computer Science. Eindhoven, Technische Universiteit Eindhoven. Master's Thesis.

Harris, C., R. B. Allen et al. (1999). Temporal Visualization for Legal Case Histories, HCIL Technical Report No. 99-18, Computer Science Department, University of Maryland.

Healey, C. G., K. S. Booth et al. (1995). "Visualizing Real-Time Multivariate Data Using Preattentive Processing." ACM Transactions on Modeling and Computer Simulation 5 (3): 190221.

Heer, J. M. (2004). "Prefuse: A Software Framework for Interactive Information Visualization." Department of Electrical Engineering and Computer Sciences. Berkeley, University of California. Master of Science.

Henry, N. (2008). Exploring Social Networks with Matrix-based Representations. Sydney, University of Sydney. PhD.

Huang, W., S.-H. Hong et al. (2006). How People Read Sociograms: A Questionnaire Study. Asia-Pacific Symposium on Information Visualization (APVIS 2006), Tokyo, Australian Computer Society.

Huang, W., S.-H. Hong et al. (2007). "Effects of Sociogram Drawing Conventions and Edge Crossings in Social Network Visualization." Journal of Graph Algorithms and Applications 11 (2): 397-429.

Kadaba, N. R., P. P. Irani et al. (2007). "Visualizing Causal Semantics Using Animations." IEEE Transactions on Visualization and Computer Graphics.

Kang, H., C. Plaisant et al. (2007). "NetLens: Iterative Exploration of Content-actor Network Data." Information Visualization 6: 18-31.

Karahalios, K. G. and F. B. Viégas (2006). Social Visualization: Exploring Text, Audio, and Video Interaction. Conference on Human Factors in Computing Systems, CHI '06, Quebec, Canada.

Keller, R., C. M. Eckert et al. (2006). "Matrices or Node-link Diagrams: Which Visual Representation is Better for Visualizing Connectivity Models?" Information Visualization 5: 6276.

Lee, B. (2006). "Interactive Visualization for Trees and Graphs." University of Maryland. PhD.

McGrath, C., J. Blythe et al. (1997). "The Effect of Spatial Arrangement of Judgments and Errors in Interpreting Graphs." Social Networks 19 (3): 223-242.

Moody, J., D. McFarland et al. (2005). "Dynamic Network Visualization." American Journal of Sociology 10 (4).

Moreno, J. L. (1953). Who Shall Survive: Foundations of Sociometry, Group Psychotherapy, and Sociodrama. Washington: Beacon House.

Munzner, T. (2000). "Interactive Visualization of Large Graphs and Networks." Department of Computer Science, Stanford University. PhD.

Mutton, P. (2004). Inferring and Visualizing Social Netoworks on Internet Relay Chat. Eighth International Conference on Information Visualisation (IV'04), IEEE.

O'Madadhain, J., D. Fisher et al. (2010)."JUNG (Java Universal Network/Graph Framework)." 

Plaisant, C. (2004). The Challenge of Information Visualization Evaluation. Working conference on Advanced Visual Interfaces (AVI 2004), Gallipoli, Italy. New York: ACM Press.

Plaisant, C., B. Milash et al. (1996). Lifelines: Visualizing Personal Histories. Conference on Human Factors in Computing Systems: Common Ground, SIGCHI, Vancouver, British Columbia.

Shneiderman, B. (1996). "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations." IEEE Symposium on Visual Languages 1: 336.

Tat, A. and S. Carpendale (2006). CrystalChat: Visualizing Personal Chat History. 39th Hawaii International Conference on System Sciences.

Tversky, B., J. G. Morrison et al. (2002). "Animation: Can It Facilitate?" International Journal of Human-Computer Studies.

Viégas, F. B. and J. Donath (2004). "Social Network Visualization: Can We Go Beyond the Graph?" Workshop on Social Networks, CSCW 4: 6-10.

Ware, C. (2000). The Visual Representation of Information Structures. 8th International Symposium on Graph Drawing.

Weng, C.-Y., W.-T. Chu et al. (2007). Movie Analysis Based on Roles' Social Network. IEEE International Conference on Multimedia and Expo, Beijing.

Winn, W. (1994). "Contributions of Perceptual and Cognitive Processes to the Comprehension of Graphics." Comprehension of Graphics (3): 27.

EXTRA FILES

COMMENTS