Effect of Lyophilization on Survivability and Growth Kinetic of Trichoderma Strains Preserved on Various Agriculture By-Products

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

4
Reader(s)
9
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 2 (June 2017) > List of articles

Effect of Lyophilization on Survivability and Growth Kinetic of Trichoderma Strains Preserved on Various Agriculture By-Products

Danuta Witkowska / Katarzyna Buska-Pisarek / Wojciech Łaba / Michał Piegza / Anna Kancelista *

Keywords : Trichoderma sp., Bioscreen C system, lignocellulosic carriers, lsurvivability after lyophilization

Citation Information : Polish Journal of Microbiology. VOLUME 66 , ISSUE 2 , ISSN (Online) 2544-4646, DOI: 10.5604/01.3001.0010.4361, June 2017

License : (CC BY-NC-ND 4.0)

Received Date : 26-August-2016 / Accepted: 21-November-2016 / Published Online: 28-June-2017

ARTICLE

ABSTRACT

Growth kinetics of four Trichoderma strains was tested on lignocellulosic by-products in solid state fermentation (SSF). The strains were also analyzed for their survival rate and growth after lyophilization on these carriers. All applied monocomponent and bicomponent media were substrates for the production and preservation of Trichoderma biomass. However, the maximum number of colony forming units (CFU/g dm) was acquired on bicomponent media based on dried grass and beet pulp or grass with corn cobs, when compared to monocomponent media. Although the process of lyophilization reduced the survival rate by 50–60%, the actual number of viable cells in obtained biopreparations remained relatively high (0.58 × 108 – 1.68 × 108 CFU/g dm). The studied strains in the preserved biopreparations were characterized by a high growth rate, as evaluated in microcultures using the Bioscreen C system.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Benitez T., A.M. Rincón, M.C. Limón and A.C. Codón. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249–260.

 

Błaszczyk L., M. Siwulski, K. Sobieralski, J. Lisiecka and M. Jędryczka. 2014. Trichoderma spp. – application and prospects for use in organic farming and industry. J. Plant Prot. Res. 54(4): 309–317.

 

Chaverri P., F. Branco-Rocha, W. Jaklitsch, R. Gazis, T. Degenkolband and G.J. Samuels. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558–590.

 

Daniel J.F. and E.R. Filho. 2007. Peptaibols of Trichoderma. Nat. Prod. Rep. 24: 1128–1141.

 

Degenkolb T., H. von Döhren, K. Nielsen, G.J. Samuels andH. Brückner. 2008. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodivers. 5: 671–680.

 

Gerhardson B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20(8): 338–343.

 

Guijarro B., I. Larena, P. Melgarejo and A. de Cal. 2006. Effect of drying on conidial viability of Penicillium frequentans, a biological control agent against peach brown rot disease caused by Monilinia spp. Biocontrol Sci. Technol. 16(3/4): 257–269.

 

Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87: 4–10.

 

Hubalek Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 45: 206–229.

 

Jash S. and S. Pan. 2007. Variability in antagonistic activity and root colonizing behavior of Trichoderma isolates. J. Trop. Agr. 45(1–2): 29–35.

 

John R.P., R.D. Tyagi, D. Prévost, S.K. Brar, S. Pouleur andR.Y. Surampalli. 2010. Mycoparasitic Trichoderma viride as a biological agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 29: 1452–1459.

 

Kancelista A. and D. Witkowska. 2008. Biosynthesis of some lytic enzymes in medium containing waste corn cobs by filamentous fungi from Trichoderma genus (in Polish). Acta Sci. Pol. Biotechnol. 7(1): 17–25.

 

Kancelista A., U. Tril, R. Stempniewicz, M. Piegza, M. Szczech and D. Witkowska. 2013. Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Pol. J. Environ. Stud. 4: 1083–1090.

 

Kaewchai S., K. Soytong and K.D. Hyde. 2009. Mycofungicides and fungal biofertilizers. Fungal Diversity 38: 25–50.

 

Khan M.O. and S. Shahzad. 2007. Screening of Trichoderma species for tolerance to fungicides. Pak. J. Bot. 39(3): 945–951.

 

Kovacs K., S. Macrelli, G. Szakacs and G. Zacchi. 2009. Enzymatic hydrolysis of steam-pretreated ligninocellulosic with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2: 14.

 

Kredics L., Z. Antal, L. Manczinger, A. Szekeres, F. Kevei andE. Nagy. 2003. Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol. Biotechnol. 41(1): 37–42.

 

Lewis J.A. and G.C. Papavizas. 1983. Production of chlamydospores and conidia by Trichoderma spp. in liquid and soil growth media. Soil Biol. Biochem 15(3): 351–357.

 

Manso T., C. Nunes, S. Raposo and M.E. Lima-Costa. 2010. Carob pulp as raw material for production of the biocontrol agent P. agglomerans PBC-1. J. Ind. Microbiol. Biotechnol. 37: 1145–1155.

 

Matroudi S., M.R. Zamani and M. Motallebi. 2009. Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem root. Egyp. J. Biol. 11: 37–44.

 

Mitchell D.A., M. Berovic and N. Krieger. 2002. Overview of solid state bioprocessing. Biotechnol. Ann. Rev. 8: 183–225.

 

Mondala A.H. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42(4): 487–506.

 

Monte E. and A. Llobell. 2003. Trichoderma in organic agriculture, pp. 725–733. Proceedings V World Avocado Congress, http://www.avocadosource.com/WAC5/Papers/WAC5_p725.pdf, 2015.10.10.

 

Monteiro V.N., R do Nascimento Silva, A.S. Steindorff, F.T. Costa, C.A. Ricart, M.V. de Sousa, M.H. Vainstein and C.J. Ulhoa. 2010. New insight in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr. Microbiol. 61: 298–305.

 

Morgan C.A., N. Herman, P.A. White and G. Vesey. 2006. Preservation of micro-organisms by drying; A review. J. Microbiol. Methods. 66: 183–193.

 

Oskiera M., M. Szczech and G. Bartoszewski. 2015. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. J. Hort. Res. 23(1): 75–86.

 

Orzua M.C., S.I. Mussatto, J.C. Contreraz-Esquivel, R. Rodriguez, H. de la Garza, J.A Teixeira and C.N. Aguilar. 2009. Exploitation of agro industrial wastes as immobilization carrier for solid state fermentation. Ind. Crop Prod. 30(1): 24–27.

 

Panahian G.H., K. Rahnama and M. Jafari. 2012. Mass production of Trichoderma ssp. and application. Intern. Res. J. Appl. Basic Sci. 3(2): 292–298.

 

Pedreschi F. and J.M. Aguilera. 1997. Viability of dry Trichoderma harzianum spores under storage. J. Bioproc. Engineering. 17: 177–183.

 

Piegza M., J. Stolaś, A. Kancelista and D. Witkowska. 2009. Influence of Trichoderma strains on the growth of pathogenic moulds in biotic test on untypical carbon sources (in Polish). Acta Sci. Pol. Biotechnol. 8(1): 4–14.

 

Prakash O., Y. Nimonkar and Y.S. Schouche. 2013. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 339: 1–9.

 

Rossi-Rodrigues B.C., M.R. Brochetto-Braga, S.M. Tauk-Tornisielo, E.C. Carmona, V.M. Arruda and J.C. Netto. 2009. Comparative growth of Trichoderma strains in different nutritional sources, using Bioscreen C automated system. Braz. J. Microbiol. 40: 404–410.

 

Simões M.L.G., S.M. Tauk-Tornisielo and D.M. Tapia. 2009. Screening of culture condition for xylanase production by filamentous fungi. Afr. J. Biotechnol. 8(22): 6317–6326.

 

Skoneczny D., M. Oskiera, M. Szczech and G. Bartoszewski. 2015. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol. 60(4): 297–307.

 

Smolińska U., B. Kowalska, W. Kowalczyk and M. Szczech. 2014. The use of agro-industrial wastes as carriers of Trichoderma fungi in the parsley cultivation. Sci. Hortic. 179: 1–8.

 

Tewari L. and C. Bhanu. 2004. Evaluation of agro-industrial wastes for conidia bases inoculum production of bio-control agent: Trichoderma harzanium. J. Sci. Ind. Res. 6: 807–812.

 

Thomas L., Ch. Larroche and A. Pandey. 2014. Current developments in solid-state fermentation. Biochem. Eng. J. 81: 146–161.

 

Viterbo A., O. Ramot, L. Chernin and I. Chet. 2002. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. A Van Leeuw J. Microb. 81: 549–556.

 

Witkowska D. and A. Maj. 2002. Production of lytic enzymes by Trichoderma spp. and their effect on the growth of phytopathogenic fungi. Folia Microbiol. 47(3): 279–282.

 

Xin F. and A. Geng. 2010. Horticultural waste as the substrate for cellulose and hemicellulase production by Trichoderma reesei under solid – state fermentation. Appl. Biochem. Biotechnol. 162: 295–306.

 

EXTRA FILES

COMMENTS