Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

4
Reader(s)
11
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 3 (September 2017) > List of articles

Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt

Amani F. Abaza * / Soraya A. El Shazly / Heba S.A. Selim / Gehan S.A. Aly

Keywords : Pseudomonas aeruginosa, Epsilometer test, metallo-beta-lactamases, MBL encoding genes

Citation Information : Polish Journal of Microbiology. VOLUME 66 , ISSUE 3 , ISSN (Online) 2544-4646, DOI: 10.5604/01.3001.0010.4855, September 2017

License : (CC BY-NC-ND 4.0)

Received Date : 07-December-2016 / Accepted: 05-May-2017 / Published Online: 27-September-2017

ARTICLE

ABSTRACT

Pseudomonas aeruginosa has emerged as a major healthcare associated pathogen that creates a serious public health disaster in both develop­ing and developed countries. In this work we aimed at studying the occurrence of metallo-beta-lactamase (MBL) producing P. aeruginosa in a healthcare setting in Alexandria, Egypt. This cross sectional study included 1583 clinical samples that were collected from patients admit­ted to Alexandria University Students’ Hospital. P. aeruginosa isolates were identified using standard microbiological methods and were tested for their antimicrobial susceptibility patterns using single disc diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Thirty P. aeruginosa isolates were randomly selected and tested for their MBL production by both phenotypic and genotypic methods. Diagnostic Epsilometer test was done to detect metallo-beta-lactamase enzyme producers and polymerase chain reaction test was done to detect imipenemase (IMP), Verona integron-encoded (VIM) and Sao Paulo metallo-beta-lactamase (IMP) encod­ing genes. Of the 1583 clinical samples, 175 (11.3%) P. aeruginosa isolates were identified. All the 30 (100%) selected P. aeruginosa isolates that were tested for MBL production by Epsilometer test were found to be positive; where 19 (63.3%) revealed blaSPM gene and 11 (36.7%) had blaIMP gene. blaVIM gene was not detected in any of the tested isolates. Isolates of MBL producing P. aeruginosa were highly susceptible to polymyxin B 26 (86.7%) and highly resistant to amikacin 26 (86.7%). MBL producers were detected phenotypically by Epsilometer test in both carbapenem susceptible and resistant P. aeruginosa isolates. blaSPM was the most commonly detected MBL gene in P. aeruginosa isolates.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Anoar K.A., F.A. Ali and S.A. Omar. 2014. Detection of metallo-beta-lactamase enzyme in some Gram-negative bacterial isolated from burn patients in Sulaimani City, Iraq. Euro. Sci. J. 10(3): 1857–1881.

 

Aoki N., Y. Ishii, T. Saga, K. Tateda, S.Y. Kimura, T. Kikuchi,Y. Kobayashi, H.Tanabe, F. Tsukada, Gejyo and others. 2010. Efficacy of calcium-EDTA as an inhibitor for metallo-β-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia. Antimicrob. Agents Chemother. 54(11): 4582–4588.

 

Bashir D., M.A. Thokar, B.A. Fomda, G. Bashir, D. Zahoor,S. Ahmed and A.S. Toboli. 2011. Detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afric. J. Microb. Res. 5(2): 164–172.

 

Bhongle N.N., N.V. Nagdeo and V.R. Thombare. 2012. The prevalence of metallo-β-lactamases in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital: an alarming threat. J. Clin. Diag. Res. 6: 1200–1202.

 

Bush K. and G.A. Jacopy. 2010. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54(3): 969–976.

 

Camagaro C.H., A. Nascimento-Brudr, A.L. Mondelli, A.C.Montelli and T. Sadatsune. 2011. Detection of IMP and IMPmetallo-β-lactamases in clinical specimens of Pseudomonas aeruginosa from a Brazilian public tertiary hospital. Braz. J. Infect. Dis. 15(5): 478–481.

 

Cantas L., S.Q. Shah, L.M. Cavaco, C. Manaia, F. Walsh, M. Popowska, H. Garelick, H. Bürgmann and H. Sørum. 2013. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front. Microbiol. 4: 1–14.

 

Cuzon G., T. Naas, P. Bogaerts, Y. Glupczynski and P. Nordmann. 2012. Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M),plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J. Antimicrob. Chemother. 67: 1865–1869.

 

Diab M., N. Fam, M. El-Said, E. El-Dabaa, I. El-Defrawy andM. Saber. 2013. Occurrence of VIM-2 metallo-β-lactamases in imipenem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. Afr. J. Microbiol. Res. 7(35): 4465–4472.

 

Divyashanthi C.M., S. Adithiyakumar and N. Bharathi. 2015. Study of prevalence and antimicrobial susceptibility pattern of bacterial isolates in a tertiary care hospital. Int. J. Pharm. Sci. 7(1): 185–190.

 

Docquier J.D., M.L. Riccio, C. Mugnaioli, F. Luzzaro, A. Endimiani, A. Toniolo, G. Amicosante and G.M. Rossolini. 2003. IMP-12, a new plasmid-encoded metallo-β-lactamase from a Pseudomonas putida clinical isolate. Antimicrob. Agents Chemother. 47: 1522–1528.

 

Doosti M., A. Ramazani and M. Garshasb. 2013. Identification and characterization of metallo-β-lactamases producing Pseudomonas aeruginosa clinical isolates in university hospital from Zanjan Province, Iran. Iran Biomed. J. 17(3): 129–133.

 

Gaspareto P.B., A.F. Martins, A.P. Zavascki and A.L. Barth. 2007 Occurrence of blaIMP-1 genes of metallo-β-lactamase in clinical isolates of Pseudomnas aeruginosa from three university hospitals in the city of Porto Alegre, Brazil. Braz. J. Microbiol. 38: 108–109.

 

Gonçalves I., R.C. Dantas, M.L. Ferreira, D.W.D.F. Batistão,P.P. Gontijo-Filho and R.M. Ribas. 2017. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz. J. Microbiol. 48(2): 211–217.

 

Hanson N.D., A. Hossain, L. Buck, E.S. Moland and S.K. Thomson. 2006. First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob. Agents Chemother. 50: 2272–2273.

 

Hashemi A., F. Fallah, S. Erfanimanesh, A.S. Chirani and M. Dadashi. 2016. Detection of antibiotic resistance genes among Pseudomonas aeruginosa strains isolated from burn patients in Iran. British. Microbiol. Res. J. 12(4): 1–6.

 

Khan S., P. Singh, R. Rashmi, A. Asthana and K. Khanal. 2014. Recent trend of acquisition of multi-drug resistance in Pseudomonas aeruginosa. Asian Pacific J. Microbiol. Res. 2(1): 1–5.

 

Khosravi Y., K.M. Vellasamy, S.T. Tay and J. Vadivelu. 2011. Molecular detection and characterization of metallo-beta-lactamase (MBL) genes and integrons of imipenem-resistant P. aeruginosa in Malaysia. J. Med. Microbiol. 60 (Pt 7): 988–994.

 

Kirkpatrick L.A. and B.C. Feeney. 2013. A simple guide to IBM SPSS statistics, p. 128. Version 20.0. for student ed. Wadsworth, Cengage Learning, Belmont, California.

 

Kumar V., M.R. Sen, S. Anupurba, P. Prakash and R. Gupta. 2011. An observational study of metallo-beta-lactamase production in clinical isolates of Pseudomonas aeruginosa: an experience at tertiary care hospital in north India. Indian J. Prev. Soc. Med. 42: 173–176.

 

Lucena A., L.M. Dalla Costa, K.S. Nogueira, A.P. Matos, A.C. Gales, M.C. Paganini, M.E. Castro and S.M. Raboni. 2014. Nosocomial infections with metallo-beta-lactamase producing P. aeruginosa: molecular epidemiology, risk factors/clinical features and outcomes. J. Hosp. Infec. 87: 234–240.

 

Matos E.C.O.D, H.J.D. Matos, M.L. Conceição, Y.C. Rodrigues, I.C.D.S Caneiro and K.V.B. Lima. 2016. Clinical and microbiological features of infections caused by Pseudomonas aeruginosa in patients hospitalized in intensive care units. Rev. Soc. Bras. Med. Trop. 49(3): 305–311.

 

Miyakis S., G.M. Eliopoulos, A. Pefanis and A. Tsakris. 2011. The challenges of antimicrobial drug resistance in Greece. Clin. Infect. Dis. 53(2): 177–184.

 

Mohamed A.A., A.M. Shibl, S.A. Zaki and A.F. Tawfik. 2011. Antimicrobial resistance pattern and prevalence of metallo-β-lactamases in Pseudomonas aeruginosa from Saudi Arabia. Afr. J. Microbiol. Res. 5(30): 5528–5533.

 

Mohamed M.N. and D. Raafat. 2011. Phenotypic and genotypic detection of metallo-beta-lactamase resistant Acinetobacter baumanii isolated from a tertiary hospital in Alexanrdia, Egypt. Res.J. Microbiol. 6: 750–760.

 

Mohanasoundaram K.M. 2011. The antimicrobial resistance pattern in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital; 2008–2010 (A 3 Year Study). J. Clin. Diag. Res. 5(3): 491–494.

 

Mohd N.M., M.H. Nurnajwa, J. Lay, J.C. Teoh, A.N. Syafinaz and M.T. Niazlin. 2015. Risk factors for multidrug-resistant Pseudomonas aeruginosa among hospitalized patients at a Malaysian hospital. Sains Malaysiana 44(2): 257–260.

 

Morales E., F. Cots, M. Sala, M. Comas, F. Belvis, M. Riu,M. Salvado, S. Grau, J.P. Horcajada, M.M. Montero and others. 2012. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv. Res. 12: 122.

 

Nouer S.A., M. Nucci, M.P. de-Oliveira, F.L. Pellegrino andB.M. Moreira. 2005. Risk factors for acquisition of multidrug-resistant Pseudomonas aeruginosa producing IMPmetallo-beta-lactamase. Antimicrob. Agents Chemother. 49(9): 3663–3667.

 

Ntokou I.A., A.N. Maniatis, A. Tsakris and S. Pournaras. 2008. Hidden VIM-1 metallo-β-lactamase phenotypes among acinetobacter baumannii clinical isolates. J. Clin. Microbiol. 46(1): 346–349.

 

Patel J.B., F.R. Cockerill, J. Alder, P.A. Bradford, G.M. Eliopoulos, D.J. Hardy, J.A. Hindler, S.G. Jenkins, J.S. Lewis, L.A. Miller and others. 2014. Performance standards for antimicrobial susceptibility testing; twenty fourth informational supplement. M100-S24. CLSI 34(1): 1–219.

 

Peleg A.Y., C. Franklin, J. Bell and D.W. Spelman. 2004. Emergence of IMP-4 metallo-β-lactamase in a clinical isolate from Australia. J. Antimicrob. Chemother. 54: 699–700.

 

Picão R.C., F.E. Carrara-Marroni, A.C. Gales, E.J. Venâncio, D.E. Xavier, M.C. Tognim and J.S. Pelayo. 2012. Metallo-β-lactamase production in Meropenem susceptible Pseudomonas aeruginosa isolates: risk for silent spread. Mem. Inst. Oswaldo Cruz 107(6): 747–751.

 

Picão R.C., S.S. Andrade, A.G. Nicoletti, E.H. Campana, G.C. Moraes, R.E. Mendes and A.C. Gales. 2008. Metallo-β-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM- IMP-, or VIM-producing isolates. J. Clin. Microbiol. 46: 2028–2037.

 

Pitout J.D., D.B. Gregson, L. Poirel, J. McClure, P. Le and D.L. Church. 2005. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J. Clin. Microbiol. 43(7): 3129–3135.

 

Ranjan S., G.S. Banashankari and P.R.S. Babu. 2015. Evaluation of phenotypic tests and screening markers for detection of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa: a prospective study. Med. JDY Patil Univ. 8: 599–605.

 

Sader H.S., A.O. Reis, S. Silbert and A.C. Gales. 2005. IMPs, VIMs and IMPs: the diversity of metallo-β-lactamases produced by carbapenem-resistant P. aeruginosa in a Brazilian hospital. Clin. Micro-biol. Infect. 11(1): 73–76.

 

Salabi A.E., M.A. Toleman, J. Weeks, T. Bruderer, R. Frei and TR Walsh. 2010. First report of metallo-beta-lactamase IMP-1 in Europe. Antimicrob. Agents Chemother. 54(1): 582.

 

Sedighi M., S. Safiri, S. Pirouzi, H. Jayasinghe, M. Sepidarkish and H. Fouladseresht. 2015. Detection and determination of the antibiotic resistance patterns in Pseudomonas aeruginosa strains isolated from clinical specimens in hospitals of Isfahan, Iran, 2012. Scimetr 3(1): e21133.

 

Sivaraj S., P. Murugesan, S. Muthurelu, S. Purusothaman and A. Silambarasan. 2012. Comparative study of Pseudomonas aeruginosa isolate recovered from clinical and environmental samples against antibiotics. Inter. J. Pharm. Sci. 4(3): 103–107.

 

Souli, M., I. Galani and H. Giamarellou. 2008. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill 13(47): 1–11.

 

Strateva T. and D. Yordanov. 2009. Pseudomonas aeruginosa is a phenomenon of bacterial resistance. J. Med. Microbiol. 58(9): 1133–1148.

 

Tille P., B.A. Forbes, D. Sahm and A. Weissfeld. 2014. Overview of bacterial identification methods and strategies, pp. 193–232.Bailey and Scott’s diagnostic microbiology, 13th ed. Elsevier, St. Louis, Missouri.

 

Vaishali G., B. Renu and D. Vaishali. 2013. Study the prevalence and risk factors of MBL producing P. aeruginosa from tertiary care centre. Int. J. Sci. Res. 4: 438.

 

Varaiya A., M. Kulkarni, P. Bhalekar and J. Dogra. 2008. Incidence of metllo-beta-lactamase-producing Pseudomonas aeruginosa in diabetes and cancer patients. Indian J. Pathol. Microbiol. 51(2): 200–203.

 

Walsh T.R. 2008. Clinically significant carbapenamases: an update. Curr. Opin. Infect. Dis. 21: 367–731.

 

World Health of Organization (WHO). 2015. Antibacterial resistance, p. 256. Fact sheet N°194. WHO, Geneva.

 

Xavier D.E., R.C. Picão, R. Girardello, L.C. Fehlberg, A.C. Gales. 2010. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeru-ginosa causing bloodstream infections in Brazil. BMC Microbiol. 10: 217.

 

Zafer M.M., H.A. El-Mahallawy, M.A. Amin, M.S. Ashour and M.H. El-Agam. 2014. Characterization of metallo-β-lactamase producing Pseudomonas aeruginosa in Egypt. Egy. J. Med. Microbiol. 23(1): 69.

 

Zafer M.M., M.H. Al-Agamy, H.A. El-Mahallawy, M.A. Amin and M.S. Ashour. 2014. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Biomed. Res. Int. 2014: 101635.

 

Zavascki A.P., A.L. Barth, A.L. Goncalves, A.L. Moro, J.F. Fernandes and A.F. Martins. 2006. The influence of metallo-beta-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J. Antimicrob. Chemother. 58: 387–392.

 

EXTRA FILES

COMMENTS