Changes in the Concentration of Carbonyl Compounds during the Alcoholic Fermentation Process Carried out with Saccharomyces cerevisiae Yeast

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

2
Reader(s)
8
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 3 (September 2017) > List of articles

Changes in the Concentration of Carbonyl Compounds during the Alcoholic Fermentation Process Carried out with Saccharomyces cerevisiae Yeast

Grzegorz Kłosowski * / Dawid Mikulski / Aleksandra Rolbiecka / Bogusław Czupryński

Keywords : Saccharomyces cerevisiae, alcoholic beverages, fermentation technology, yeast fermentation

Citation Information : Polish Journal of Microbiology. VOLUME 66 , ISSUE 3 , ISSN (Online) 2544-4646, DOI: 10.5604/01.3001.0010.4861, September 2017

License : (CC BY-NC-ND 4.0)

Received Date : 23-November-2016 / Accepted: 12-May-2017 / Published Online: 27-September-2017

ARTICLE

ABSTRACT

The aim of the study was to determine the influence of the source material and the applied S. cerevisiae strain on the concentrationsof carbonyl fractions in raw spirits. Acetaldehyde was the most common aldehyde found, as it accounted for 88–92% of the total amount of aldehydes. The concentration of acetaldehyde in maize, rye and amaranth mashes was highly correlated with fermentation productivity at a given phase of the process, and reached its highest value of 193.5 mg/l EtOH in the first hours of the fermentation, regardless of the yeast strain applied. The acetaldehyde concentration decreased over the time with the decreasing productivity, reaching its lowest value at the 72nd hour of the process. The final concentration of acetaldehyde depended on the raw material used (ca 28.0 mg/l EtOH for maize mashes, 40.3 mg/l EtOH for rye mashes, and 74.4 mg/l EtOH for amaranth mashes). The effect of the used yeast strain was negligible.The overall concentration of the analyzed aldehydes was only slightly higher: ca 30.3 mg/l EtOH for maize mashes, 47.8 mg/l EtOH for rye mashes, and 83.1 mg/l EtOH for amaranth mashes.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Biernacka P. and W. Wardencki. 2012. Volatile composition of raw spirits of different botanical origin. J. I. Brewing 118: 393–400.

 

BS EN ISO 10520:1998. Native starch. Determination of starch content. Ewers polarimetric method, ISBN: 0 580 30395 0.

 

Cachot T., M. Müller and M.-N. Pons. 1991. Kinetics of volatile metabolites during alcoholic fermentation of cane molasses by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 35: 450–454.

 

Cheraiti N., S. Guezenec and J.-M. Salmon. 2010. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character. Appl. Microbiol. Biotechnol. 86: 693–700.

 

Kłosowski G., D. Mikulski, B. Czupryński and K. Kotarska. 2010. Characterisation of fermentation of high-gravity maize mashes with the application of pullulanase, proteolytic enzymes and enzymes degra-ding non-starch polysaccharides. J. Biosci. Bioeng. 109(5): 466–471.

 

Kłosowski G. and D. Mikulski, 2010. The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits. Bioresource Technol. 101: 9723–9727.

 

Lambrechts M.G. and I.S. Pretorius. 2000. Yeast and its importance to wine aroma – a review. S. Afr. J. Enol. Vitic. 21: 97–129.

 

Li E. and R.M. de Orduña. 2011. Evaluation of acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system. J. Ind. Microbiol. Biotechnol. 38: 1391–1398.

 

Liu S.-Q. and G.J. Pilone. 2000. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Tech. 35: 49–61.

 

Longo E., J.B. Velázquez, C. Sieiro, J. Cansado, P. Calo andT.G. Villa. 1992. Production of higher alcohols, ethyl acetate, acetaldehyde and other compounds by 14 Saccharomyces cerevisiae wine strains isolated from the same region (Salnés, N. W. Spain). World J. Microb. Biot. 8: 539–541.

 

Lorenz K. and B. Wright. 1984. Phytate and tannin content of amaranth. Food Chem. 14(1): 27–34.

 

Mikulski D., G. Kłosowski and A. Rolbiecka. 2014. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process. Appl. Biochem. Biotech. 174: 1455–1470.

 

Mikulski D. and G. Kłosowski. 2015. Phytic acid concentration in selected raw materials and the analysis of its hydrolysis rate with the use of microbial phytases during the mashing process. J. I. Brewing 121: 213–218.

 

Moreno-Arribas M.V. and M. C. Polo. 2009. Wine Chemistry and Biochemistry. Springer Science+Business Media, B.V., Dordrecht, The Netherlands.

 

Nascimento R. F., J.C. Marques, B.S.L. Neto, D. De Keukeleire and D.W. Franco. 1997. Qualitative and quantitative high-performance liquid chromatographic analysis of aldehydes in Brazilian sugar cane spirits and other distilled alcoholic beverages. J. Chromatogr. A 782: 13–23.

 

Nykänen L. and H. Suomalainen. 1983. Aroma of beer, wine and distilled alcoholic beverages. Kluwer Academic Publishers, D. Reidel Publishing Company, England.

 

Pan W., D. Jussier, N. Terrade, R.Y. Yada and R.M. de Orduña. 2011. Kinetics of sugars, organic acids and acetaldehyde during simultaneous yeast-bacterial fermentations of white wine at different pH values. Food Res. Int. 44: 660–666.

 

Pietruszka M. and J.S. Szopa. 2014. Agricultural distillates from polish varieties of rye. Czech J. Food Sci. 32(4): 406–411.

 

Plutowska B., P. Biernacka and W. Wardencki. 2010. Identification of volatile compounds in raw spirits of different organoleptic quality. J. I. Brewing 116(4): 433–439.

 

Ribéreau-Gayon P., D. Dubourdieu, B. Donèche and A. Lonvaud. 2006a. Handbook of enology. Vol. 2. The Chemistry of Wine Stabilization and Treatments. 2nd edition. John Wiley and Sons, Ltd, England.

 

Ribéreau-Gayon P., D. Dubourdieu, B. Donèche and A. Lonvaud 2006b. Handbook of enology. Vol. 1. The microbiology of wine and vinifications. 2nd edition. John Wiley and Sons, Ltd, England.

 

Ueno Y. and H. Matsumoto. 1975. Inactivation of some thiol-enzymes by trichothecene mycotoxins from Fusarium species. Chem. Pharm. Bull. 23(10): 2439–2442.

 

EXTRA FILES

COMMENTS