Comparison of Microbial Communities Associated with Halophyte (Salsola stocksii) and Non-Halophyte (Triticum aestivum) Using Culture-Independent Approache


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 3 (September 2017) > List of articles

Comparison of Microbial Communities Associated with Halophyte (Salsola stocksii) and Non-Halophyte (Triticum aestivum) Using Culture-Independent Approache

Salma Mukhtar / Ayesha Ishaq / Sara Hassan / Samina Mehnaz / Muhammad S. Mirza / Kauser A. Malik *

Keywords : 16S rRNA gene approach, microbial communities associated with plants, microbiome of halophyte

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 3, Pages 353-364, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 10-November-2016 / Accepted: 12-January-2017 / Published Online: 27-September-2017



Halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in osmoregulation of these plants. The objective of this study is to investigate the microbiomes associated with belowground (rhizo­sphere), internal (endosphere) and aboveground (phyllosphere) tissues of halophyte (Salsola stocksii) through metagenomics approach. Plant samples were collected from Khewra Salt Mines. The metagenomic DNA from soil, root and shoot samples was isolated with the help of FastDNA spin kit. Through PCR, the 16S rRNA gene from four different Salsola plants and wheat plants was amplified and cloned in InsTAclone PCR cloning kit. Metagenomic analyses from rhizosphere, endosphere and phyllosphere of Salsola showed that approximately 29% bacteria were uncultured and unclassified. Proteobacteria and Actinobacteria were the most abundant phyla in Salsola and wheat. How­ever, Firmicutes, Acidobacteria, Bacteriodetes, Planctomycetes, Cyanobacteria, Thermotogae, Verrucomicrobia, Choroflexi and Euryarchaeota were predominant groups from halophyte whereas Actinobacteria, Proteobacteria, Firmicutes, Cyanobacteria, Acidobacteria, Bacteriodetes, Planctomycetes and Verrucomicrobia were predominant phyla of wheat samples. Diversity and differences of microbial flora of Salsola and wheat suggested that functional interactions between plants and microorganisms contribute to salt stress tolerance.

Content not available PDF Share



Adviento-Borbe M.A., J.W. Doran, R.A. Drijber and A. Dobermann. 2006. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. J. Environ. Qual. 35: 1999–2010.


Ahmad K., M. Hussain, M. Ashraf, M. Luqman, M.Y. Ashraf and Z.I. Khan. 2007. Indigenous vegetation of Soon valley at the risk of extinction. Pak. J. Bot. 39(3): 679–690.


Ajmal M. and M. Qaiser. 2006. Halophytes of Pakistan: characteristics, distribution andpotential economic usages. Saline Ecosys. 2: 129–153.


Akhtar N., M.A. Ghauri, A. Iqbal, M.A. Anwar and K. Akhtar. 2008. Biodiversity and phylogenetic analysis of culturable bacteria indigenous to Khewra salt mine of Pakistan and their industrial importance. Braz. J. Microbiol. 39: 143–150.


Anderson J.M. and J.S. Ingram. 1993. Tropical soil biology and fertility: a handbook of methods. 2nd ed. CAB International, Wallingford, UK.


Anton J., A. Oren, S. Benlloch, F. Rodriguez-Valera, R. Amann and R. Rossello-Mora. 2002. Salinibacter ruber gen. nov., sp nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52: 485–491.


Arndt D., J. Xia, Y. Liu, Y. Zhou, A.C. Guo, J.A. Cruz, I. Sinelnikov, K. Budwill, C.L. Nesbø and D.S. Wishart. 2012. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acid. Res. 40: W88–W95.


Balint M., P. Tiffin, B. Hallstrom, R.B. O’Hara, M.S. Olson, J.D. Fankhauser, M. Piepenbring and I. Schmitt. 2013. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 8: e53987.


Bodenhausen N., M.W. Horton and J. Bergelson. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8: e56329.


Bodenhausen N., M. Bortfeld-Miller, M. Ackermann and J.A. Vorholt. 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Gen. 10: e1004283.


Bonito G., H. Reynolds, M. Robeson, J. Nelson, B. Hodkinson, G. Tuskan, C.W. Schadt and R. Vilgalys. 2014. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 23: 3356–3370.


Browne P., O. Rice, S.H. Miller, J. Burke, D.N. Dowling, J.P. Morrissey and F. O’Gara. 2009. Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl. Soil Ecol. 43: 131–138.


Bulgarelli D., M. Rott, K. Schlaeppi, E. VanThemaat, N. Ahmadinejad, F. Assenza, P. Rauf, B. Huettel, R. Reinhardt and E. Schmelzer. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nat. 488: 91–95.


Craita E.B. and G. Tom. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plan. Sci. 4: 1–18.


Dagla H.R. and N.S. Shekhawat. 2005. In vitro multiplication of Haloxylon recurvum (Moq.) – aplant for saline soil reclamation. J. Plant. Biol. 7:155–160.


Dastgheib S.M., M.A. Amoozegar, K. Khajeh and A. Ventosa. 2011. A halotolerant Alcanivorax sp. strain with potential appli-cation in saline soil remediation. Appl. Microbiol. Biotech. 90: 305–312.


Delgado-García M., C.N. Aguilar, J.C. Contreras-Esquivel and R. Rodríguez-Herrera. 2014. Screening for extracellular hydrolytic enzymes production by different halophilic bacteria. Mycopath 12(1): 17–23.


Dimkpa C.O., J. Zeng, J.E. McLean, D.W. Britt, J. Zhan and A.J. Anderson. 2012. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 78: 1404–1410.


Dodd I.C. and F. Perez-Alfocea. 2012. Microbial amelioration of crop salinity stress. J. Exper. Bot. 63(9): 3415–3428.


Farias M.E., S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez and M.P. Vazquez. 2011. Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hyper-saline volcano-associated lake at high altitude in the Argentinean Puna. J. Bacteriol. 193: 3686–3687.


Ghosh A., N. Dey, A. Bera, A. Tiwari, K. Sathyaniranjan, K. Chakrabarti and D. Chattopadhyay. 2010. Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Sys. 6:1–5.


Gupta G., S.S. Parihar, N.K. Ahirwar, S.K. Snehi and V. Singh. 2015. Plant growth promoting rhizobacteria (pgpr): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7: 96–102.


Hall T.A. 1999. BioEdit: a user-friendly biological sequence aligment editor and analysis program for Windowa 95/98/NT. Nucl. Acid. Symp. Ser. 41:95–98.


Iverson V., R.M. Morris, C.D. Frazar, C.T. Berthiaume, R.L. Morales and E.V. Armbrust. 2012. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Scien. 335: 587–590.


Jogler C., F.O. Glockner and R. Kolter. 2011. Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl. Environ. Microbiol. 77: 5826–5829.


Khan A.G. 2009. Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J. Trace. Elem. Med. Biol. 18: 355–364.


Knief C., N. Delmotte, S. Chaffron, M. Stark, G. Innerebner, R. Wassmann, C. VonMering and J.A. Vorholt. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378–1390.


Krid S., A. Rhouma, I. Mogou, J.M. Quesada, X. Nesme and A. Gargouri. 2010. Pseudomonas savastonoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas fluorescens and Bacillus subtilis. J. Plan. Pathol. 92: 335–341.


Liszka M., M. Clark, E. Schneider and D.S. Clark. 2012. Nature versus nurture: developing enzymes that function under extreme conditions. Ann. Rev. Chem. Biomol. Eng. 3: 77–102.


López-López A., P. Yarza, M. Richter, A. Suárez-Suárez, J. Antón, H. Niemann and others. 2010. Extremely halophilic microbial communities in anaerobic sediments from a solar saltern. Environ. Microbiol. Rep. 2: 258–271.


Lundberg D.S., S.L. Lebeis, S.H. Paredes, S. Yourstone, J. Gehring, S. Malfatti, J. Tremblay, A. Engelbrektson and V. Kunin. 2012. Defining the core Arabidopsis thaliana root microbiome. Nat. 488: 86–90.


Ma B. and J. Gong. 2013. A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J. Microbiol. Biotechnol. 29: 2325–2334.


Martin A.P. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68: 3673–3682.


Mason O.U., N.M. Scott, A. Gonzalez, A. Robbins-Pianka, J. Baelum, J. Kimbrel, N.J. Bouskill, E. Prestat, S. Borglin and D.C. Joyner. 2014. Metagenomics reveals sediment microbial community response to deep water Horizon oil spill. ISME J. 8: 1464–1475.


Mukhtar S., M.S. Mirza, H.A. Awan, A. Maqbool, S. Mehnaz and K.A. Malik. 2016. Microbial diversity and metagenomic analysis of the rhizosphere of Para Grass (Urochloa mutica) growing under saline conditions. Pak. J. Bot. 48 (2): 779–791.


Munson M.A., D.B. Nedwell and T.M. Embley. 1997. Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 63(12): 4729–4733.


Mwirichia R., S. Cousin, A.W. Muigai, H.I. Boga, and E. Stackebrandt. 2011. Bacterial diversity in the haloalkaline lake Elmenteita, Kenya. Curr. Microbiol. 62: 209–221.


Olsen S.R., C.V. Cole, F.S. Watanabe and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939: 1–19. Gov. Printing Office Washington D.C.


Rolli E., R. Marasco, G. Vigani, B. Ettoumi, F. Mapelli and others. 2015. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 17: 316–331.


Ruppel S., P. Franken and K. Witzel. 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Func. Plan. Biol. 40: 940–951.


Shakya M., N. Gottel, H. Castro, Z.K. Yang, L. Gunter, J. Labbe, W. Muchero, G. Bonito, R. Vilgalys and G. Tuskan. 2013. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE 8: e76382.


Sheng J.L., S.H. Zheng, N.H. Li, L. Jie, H.S. Su, X.C. Lin, L.K. Jia, L. Jun, H. Min and S.S. We. 2014. Microbial communities evolve faster in extreme environments. Scient. Rep. 4: 1–9.


Shi W., T. Takano and S. Liu. 2012. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J. Microbiol. Biotechnol. 28(5): 2147–2157.


Sundaram R., S.J. Inbaneson, U. Muthu, S.R. Priya, R. Andy and M.B. Banerjee. 2011a. Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J. Pharm. Res. 4(1): 294–296.


Tan Z.Y., X.D. Xu, E.T. Wan, J.L. Gao, E.M. Romer and W.X. Chen. 1997. Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related Rhizobia. Int. J. Sys. Bacteriol. 47(3): 874–879.


Tkavc R., C. Gostincar, M. Turk, P.T. Visscher, A. Oren and N. Gunde-Cimerman. 2011. Bacterial communities in the ‘petola’ microbial mat from the Secovlje salterns (Slovenia). FEMS Microbiol. Ecol. 75:48–62.


Vaisman N. and A. Oren. 2009. Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes. Int. J. Syst. Evol. Microbiol. 59: 2571–2574.


Valenzuela-Encinas C., I. Neria-Gonzalez, R.J. Alcantara-Hernandez, J.A. Enriquez-Aragon, I. Estrada-Alvarado, C. Hernandez-Rodriguez, L. Dendooven and R. Marsch. 2008. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12: 247–254.


Vasavada S.H., J.T. Thuma and S.P. Singh. 2006. Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycetes Streptomyces sannanensis strain RJT-1. Curr. Sci. India 91: 1393–1397.


Walkley A. and I.A. Black. 1934. An Examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29–37.


Wang Q., G.M. Garrity, J.M. Tiedje and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16): 5261–5267.


Zhou M., W. Chen, H. Chen and G. Wei. 2012. Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2(Tau), a novel salt-resistant species isolated from the desert of north-western China. J. Bacteriol. 194(5): 1261–1262.