Genes Controlling 2-deoxyglucose Induced Lysis and Formation of Reactive Oxygen Species in Schizosaccharomyces pombe


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 3 (September 2017) > List of articles

Genes Controlling 2-deoxyglucose Induced Lysis and Formation of Reactive Oxygen Species in Schizosaccharomyces pombe

Akshay Vishwanatha * / Cletus J.M. D’Souza / Martin E. Schweingruber

Keywords : 2-deoxyglucose, fission yeast, glucose signaling, lysis, ROS formation

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 3, Pages 393-396, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 07-September-2016 / Accepted: 12-January-2017 / Published Online: 27-September-2017



Schizosaccharomyces pombe cells of strains each carrying a deletion of one of the genes snf5, ypa1, pho7 and pas1 and of a strain overexpress­ing gene odr1, have been previously shown to grow in presence of the toxic glucose analogue 2-deoxyglucose (2-DG). Here we report that these genes control 2-DG induced lysis and are, with the exception of odr1, also involved in control of formation of reactive oxygen species (ROS) upon exposure of cells to H2O2. Lysis of deletion strains, but not of strain overexpressing odr1, is dependent on glucose concentra­tion of the medium whereas ROS formation is glucose independent.

Content not available PDF Share



Apel K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.


Biely P., Z. Krátký, J. Kovařík and Š. Bauer. 1971. Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J. Bacteriol. 107: 121–129.


Brown J. 1962. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism. 11: 1098–1112.


Coleman M.C., C.R. Asbury, D. Daniels, J. Du, N. Aykin-Burns, B.J. Smith, L. Li, D.R. Spitz and J.J. Cullen. 2008. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic. Biol. Med. 44: 322–331.


Farkas V., A. Svoboda and S. Bauer. 1969. Inhibitory effect of 2-deoxy-d-glucose on the formation of the cell wall in yeast protoplasts. J. Bacteriol. 98: 744–748.


Goyal A. and V. Simanis. 2012. Characterization of ypa1 and ypa2, the Schizosaccharomyces pombe orthologs of the peptidyl proyl isomerases that activate PP2A, reveals a role for Ypa2p in the regu-lation of cytokinesis. Genetics 190: 1235–1250.


Gupta D.R., S.K. Paul, Y. Oowatari, Y. Matsuo and M. Kawamukai. 2011. Complex formation, phosphorylation, and localization of protein kinase A of Schizosaccharomyces pombe upon glucose starvation. Biosci. Biotechnol. Biochem. 75: 1456–1465.


Herrero E., J. Ros, G. Bellí and E. Cabiscol. 2008. Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta 1780: 1217–1235.


Hoffman C.S., V. Wood and P.A. Fantes. 2015. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics 201: 403–423.


Ikner A. and K. Shiozaki. 2005. Yeast signaling pathways in the oxidative stress response. Mutat. Res. 569: 13–27.


Johnson B.F. 1968. Lysis of yeast cell walls induced by 2-deoxyglucose at their sites of glucan synthesis. J. Bacteriol. 95: 1169–1172.


Kato H., S. Kira and M. Kawamukai. 2013. The transcription factors Atf1 and Pcr1 are essential for transcriptional induction of the extracellular maltase Agl1 in fission yeast. PloS One 8: e80572.


Krátký Z., P. Biely and Š. Bauer. 1975. Mechanism of 2-deoxy-d-glucose inhibition of cell-wall polysaccharide and glycoprotein biosyntheses in Saccharomyces cerevisiae. Eur. J. Biochem. 54: 459–467.


Madrid M., T. Soto, A. Franco, V. Paredes, J. Vicente, E. Hidalgo, M. Gacto and J. Cansado. 2004. A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. J. Biol. Chem. 279: 41594–41602.


Madrid M., T. Soto, H. K. Khong, A. Franco, J. Vicente, P. Pérez, M. Gacto and J. Cansado. 2006. Stress-induced response, localization, and regulation of the Pmk1 cell integrity pathway in Schizosaccharomyces pombe. J. Biol. Chem. 281: 2033–2043.


Madrid M., J. Fernández-Zapata, L. Sánchez-Mir, T. Soto,A. Franco, J. Vicente-Soler, M. Gacto and J. Cansado. 2013. Role of the fission yeast cell integrity MAPK pathway in response to glucose limitation. BMC Microbiol. 13: 34.


McCartney R.R., D.G. Chandrashekarappa, B.B. Zhang andM.C. Schmidt. 2014. Genetic analysis of resistance and sensiti-vity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics 198: 635–646.


Megnet R. 1965. Effect of 2-deoxyglucose on Schizosaccharomyces pombe. J. Bacteriol. 90: 1032–1035.


Monahan B. J., J. Villén, S. Marguerat, J. Bähler, S. P. Gygi andF. Winston. 2008. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat. Struct. Mol. Biol. 15: 873–880.


O’Donnell A.F., R.R. McCartney, D.G. Chandrashekarappa, B.B. Zhang, J. Thorner and M.C. Schmidt. 2015. 2-deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3. Mol. Cell. Biol. 35: 939–955.


Palabiyik B., C. Kig, M. Pekmez, L. Dalyan, N. Arda andG. Temizkan. 2012. Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem. Genet. 50: 336–349.


Palabiyik B., F. Jafari Ghods and E. Onay Ucar. 2013. Effects of glucose sensing/signaling on oxidative stress response in glucose repression mutants of Schizosaccharomyces pombe. Genet. Mol. Res. GMR 12: 5046–5056.


Pelicano H., D. S. Martin, R.-H. Xu and P. Huang. 2006. Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.


Randez-Gil F., A. Blasco, J. A. Prieto and P. Sanz. 1995. DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast Chichester Engl. 11: 1233–1240.


Ray P.D., B.-W. Huang and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24: 981–990.


Roux A.E., A. Leroux, M.A. Alaamery, C.S. Hoffman, P. Chartrand, G. Ferbeyre and L.A. Rokeach. 2009. Pro-aging effects of glucose signaling through a g protein-coupled glucose receptor in fission yeast. PLoS Genet. 5: e1000408.


van Slegtenhorst M., A. Mustafa and E.P. Henske. 2005. Pas1, a G1 cyclin, regulates amino acid uptake and rescues a delay in G1 arrest in Tsc1 and Tsc2 mutants in Schizosaccharomyces pombe. Hum. Mol. Genet. 14: 2851–2858.


Suslu K. G., B. Palabiyik and G. Temizkan. 2011. Genes invol-ved in glucose repression and oxidative stress response in the fission yeast Schizosaccharomyces pombe. Genet. Mol. Res. GMR 10: 4041–4047.


de la Torre-Ruiz M.A., N. Pujol and V. Sundaran. 2015. Coping with oxidative stress. The yeast model. Curr. Drug Targets 16: 2–12.


Vishwanatha A., C. Rallis, S.B. Subramanyaswamy, C.J. Michael D’Souza, J. Bähler and M.E. Schweingruber. 2016. Identification of nuclear genes affecting 2-Deoxyglucose resistance in Schizosaccharomyces pombe. FEMS Yeast Res. 16(6): fow061.


Wu D. and P. Yotnda. 2011. Production and detection of reactive oxygen species (ROS) in cancers. J. Vis. Exp. JoVE. 57.pii: 3357.