The Prevalence of Exoenzyme S Gene in Multidrug-Sensitive and Multidrug-Resistant Pseudomonas aeruginosa Clinical Strains


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 4 (December 2017) > List of articles

The Prevalence of Exoenzyme S Gene in Multidrug-Sensitive and Multidrug-Resistant Pseudomonas aeruginosa Clinical Strains

Tomasz Bogiel * / Aleksander Deptuła / Joanna Kwiecińska-Piróg / Małgorzata Prażyńska / Agnieszka Mikucka / Eugenia Gospodarek-Komkowska

Keywords : Pseudomonas aeruginosa, exoenzyme S, multidrug sensitive, multidrug resistant, virulence genes

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 4, Pages 427-431, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 11-February-2017 / Accepted: 17-May-2017 / Published Online: 04-December-2017



Pseudomonas aeruginosa rods are one of the most commonly isolated microorganisms from clinical specimens, usually responsible for nosocomial infections. Antibiotic-resistant P. aeruginosa strains may present reduced expression of virulence factors. This fact may be caused by appropriate genome management to adapt to changing conditions of the hospital environment. Virulence factors genes maybe replaced by those crucial to survive, like antimicrobial resistance genes. The aim of this study was to evaluate, using PCR, the occurrence of exoenzyme S-coding gene (exoS) in two distinct groups of P. aeruginosa strains: 83 multidrug-sensitive (MDS) and 65 multidrug-resistant (MDR) isolates. ExoS gene was noted in 72 (48.7%) of the examined strains: 44 (53.0%) MDS and 28 (43.1%) MDR. The observed differ­ences were not statistically significant (p = 0.1505). P. aeruginosa strains virulence is rather determined by the expression regulation of the possessed genes than the difference in genes frequency amongst strains with different antimicrobial susceptibility patterns.

Content not available PDF Share



Amirmozafari N., J. Fallah Mehrabadi and A. Habibi. 2016. Association of the exotoxin A and exoenzyme S with antimicrobial resistance in Pseudomonas aeruginosa strains. Arch. Iran Med. 19(5): 353–358.


Azimi S., H.S. Kafil, H.B. Baghi, S. Shokrian, K. Najaf, M. Asgharzadeh, M. Yousefi, F. Shahrivar and M. Aghazadeh. 2016. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg. Infect. Control. 11: Doc04.


Barbieri J.T. 2000. Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin. Int. J. Med. Microbiol. 290: 381–387.


Barbieri J.T. and J. Sun. 2004. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 152: 79–92.


Bruno T.F., D.E. Woods and C.H. Mody. 2000. Exoenzyme Sfrom Pseudomonas aeruginosa induces apoptosis in T lymphocytes. J. Leukoc. Biol. 67: 808–816.


Choy M.H., F. Stapleton, M.D. Willcox and H. Zhu. 2008. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J. Med. Microbiol. 57(12): 1539–1546.


Deptuła A. and E. Gospodarek. 2010. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch. Microbiol. 192: 79–84.


Di Martino P., H. Gagnière, H. Berry and R. Bret. 2002. Antibiotic resistance and virulence properties of Pseudomonas aeruginosa strains from mechanically ventilated patients with pneumonia in intensive care units: comparison with imipenem-resistant extra-respiratory tract isolates from uninfected patients. Microbes Infect. 4: 613–620.


Falagas M.E., P.K. Koletsi and I. Bliziotis. 2006. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. Review. J. Med. Microbiol. 55(12): 1619–1629.


Fazeli N. and H. Momtaz. 2014. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red. Crescent Med. J. 16(10): e15722.


Feltman H., G. Schulert, S. Khan, M. Jain, L. Peterson andA.R. Hauser. 2001. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiol. 147: 2659–2669.


Finlayson E.A. and P.D. Brown. 2011. Comparison of antibiotic resistance and virulence factors in pigmented and non-pigmented Pseudomonas aeruginosa. West Indian Med. J. 60(1): 24–32.


Frithz-Lindsten E., Y. Du, R. Rosqvist and A. Forsberg. 1997. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol. Microbiol. 25: 1125–1139.


Fuse K., S. Fujimura, T. Kikuchi, K. Gomi, Y. Iida, T. Nukiwa and A. Watanabe. 2013. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa. J. Infect. Chemother. 19(1): 82–88.


Garey K.W., Q.P. Vo, M.T. Larocco, L.O. Gentry and V.H. Tam. 2008. Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia. J. Chemother. 20(6): 714–720.


Hamood A.N., J.A. Griswold and C.M. Duhan. 1996. Production of extracellular virulence factors by Pseudomonas aeruginosa isolates obtained from tracheal, urinary tract, and wound infections. J. Surg. Res. 61(2): 425–432.


Hayashi N., H. Nishizawa, S. Kitao, S. Deguchi, T. Nakamura,A. Fujimoto, M. Shikata and N. Gotoh. 2015. Pseudomonas aeruginosa injects type III effector ExoS into epithelial cells through the function of type IV pili. FEBS Lett. 589(8): 890–896.


Heimer S.R., D.J. Evans, M.E. Stern, J.T. Barbieri, T. Yahr and S.M. Fleiszig. 2013. Pseudomonas aeruginosa utilizes the type III secreted toxin ExoS to avoid acidified compartments within epithelial cells. PLoS One 8(9): e73111.


Hill D., B. Rose, A. Pajkos, M. Robinson, P. Bye, S. Bell, M. Elkins, B. Thompson, C. Macleod, S.D. Aaron and others. 2005. Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic and biofilm conditions. J. Clin. Microbiol. 43: 5085–5090.


Hsu D.I., M.P. Okamoto, R. Murthy and A. Wong-Beringer. 2005. Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J. Antimicrob. Chemother. 55: 535–541.


Idris S.N., M.N. Desa, M.N. Aziz and N.M. Taib. 2012. Antimicrobial susceptibility pattern and distribution of exoU and exoS in clinical isolates of Pseudomonas aeruginosa at a Malaysian hos-pital. Southeast Asian J. Trop. Med. Public Health 43(1): 116–123.


Joly B., M. Pierre, S. Auvin, F. Colin, F. Gottrand, B. Guery and M.O. Husson. 2005. Relative expression of Pseudomonas aeruginosa virulence genes analyzed by a real time RT-PCR method during lung infection in rats. FEMS Microbiol. Lett. 243: 271–278.


Khosravi A.D., F. Shafie, E. Abbasi Montazeri and S. Rostami. 2016. The frequency of genes encoding exotoxin A and exoenzyme S in Pseudomonas aeruginosa strains isolated from burn patients. Burns 42(5): 1116–1120.


Krueger K.M. and J.T. Barbieri. 1995. The family of bacterial ADP-ribosylating exotoxins. Clin. Microbiol. Rev. 8: 34–37.


Lanotte P., S. Watt, L. Mereghetti, N. Dartiguelongue, A. Rastegar-Lari, A. Goudeau and R. Quentin. 2004. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J. Med. Microbiol. 53: 73–81.


Linares J.F., J.A. López, E. Camafeita, J.P. Albar, F. Rojo andJ.L. Martínez. 2005. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J. Bacteriol. 187(4): 1384–1391.


Magiorakos A.P., A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter, B. Olsson--Liljequist and others. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3): 268–281.


Mitov I., T. Strateva and B. Markova. 2010. Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz. J. Microbiol. 41(3): 588–595.


Obritsch M.D., D.N. Fish, R. MacLaren and R. Jung. 2004. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 48: 4606–4610.


Pierre M., R. Le Berre, H. Tiesset, K. Faure, B. Guery, J.L. Desseyn, C. Galabert, L. Béghin, C. Beermann, F. Gottrand and others. 2008. Kinetics of Pseudomonas aeruginosa virulence gene expression during chronic lung infection in the murine model. Med. Mal. Infect. 38: 318–323.


Pirnay J.P., F. Bilocq, B. Pot, P. Cornelis, M. Zizi, J. Van Eldere,P. Deschaght, M. Vaneechoutte, S. Jennes, T. Pitt and others. 2009. Pseudomonas aeruginosa population structure revisited. PLoS One 4: 1–20.


Ramisse F., C. van Delden, S. Gidenne, J. Cavallo and E. Hernandez. 2000. Decreased virulence of a strain of Pseudomonas aeruginosa O12 overexpressing a chromosomal type 1 beta-lactamase could be due to reduced expression of cell-to-cell signaling dependent virulence factors. FEMS Immunol. Med. Microbiol. 28: 241–245.


Rumbaugh K.P., J.A. Griswold and A.N. Hamood. 1999a. Pseudomonas aeruginosa strains obtained from patients with tracheal,urinary tract and wound infection: variations in virulence factors and virulence genes. J. Hosp. Infect. 43(3): 211–218.


Rumbaugh K.P., A.N. Hamood and J.A. Griswold. 1999b. Analysis of Pseudomonas aeruginosa clinical isolates for possible variations within the virulence genes exotoxin A and exoenzyme S. J. Surg. Res.82(1): 95–105.


Stover C.K., X.Q. Pham, A.L. Erwin, S.D. Mizoguchi, P. Warrener, M.J. Hickey, F.S. Brinkman, W.O. Hufnagle, D.J. Kowalik, M. Lagrou and others. 2000. Complete genome sequence of Pseudo-monas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964.


Tam V., A.N. Schilling, G. Vo, S. Kabbara, A.L. Kwa, N.P. Wiederhold and R.E. Lewis. 2005. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49:3624–3630.


Tartor Y.H. and E.Y. El-Naenaeey. 2016. RT-PCR detection of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa. Cell. Mol. Biol. (Noisy-le-grand). 62(1):56–62.


Tingpej P., L. Smith, B. Rose, H. Zhu, T. Conibear, K. Al Nassafi,J. Manos, M. Elkins, P. Bye, M. Willcox and others. 2007. Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J. Clin. Microbiol. 45(6): 1697–1704.


Winstanley C., S.B. Kaye, T.J. Neal, H.J. Chilton, S. Miksch,C.A. Hart and Microbiology Ophthalmic Group. 2005. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J. Med. Microbiol. 54: 519–526.


Wolska K. and P. Szweda. 2009. Genetic features of clinical Pseudomonas aeruginosa strains. Pol. J. Microbiol. 58(3): 255–260.


Yousefi-Avarvand A., R. Khashei, H. Sedigh Ebrahim-Saraie,A. Emami, K. Zomorodian and M. Motamedifar. 2015. The frequency of exotoxin A and exoenzymes S and U genes among clinical isolates of Pseudomonas aeruginosa in Shiraz, Iran. Int. J. Mol. Cell Med. 4(3):167–173.


Zhang Y. and Y. Wei. 2009. Impact of glutathione on the gene expression of exoY and exoS in Pseudomonas aeruginosa. Wei Sheng Wu Xue Bao 49: 603–608.


Zhuo C., L.X. Wang, S.N. Xiao, H.Y. Li, G.X. Qiu and N.S. Zhong. 2010. Clinical significance of virulence-related genes of type III secretion system of Pseudomonas aeruginosa. Zhonghua Shao Shang Za Zhi 26(5): 354–359.