The Determination and Correlation of Various Virulence Genes, ESBL, Serum Bactericidal Effect and Biofilm Formation of Clinical Isolated Classical Klebsiella pneumoniae and Hypervirulent Klebsiella pneumoniae from Respiratory Tract Infected Patients


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 4 (December 2017) > List of articles

The Determination and Correlation of Various Virulence Genes, ESBL, Serum Bactericidal Effect and Biofilm Formation of Clinical Isolated Classical Klebsiella pneumoniae and Hypervirulent Klebsiella pneumoniae from Respiratory Tract Infected Patients

Rambha K. Shah / Zhao H. Ni / Xiao Y. Sun / Guo Q. Wang / Fan Li *

Keywords : biofilm, ESBL, classical K. pneumoniae vs hypervirulent K. pneumoniae, serum resistance, virulence genes

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 4, Pages 501-508, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 02-May-2016 / Accepted: 04-April-2017 / Published Online: 04-December-2017



Klebsiella pneumoniae strains that are commonly recognized by clinicians and microbiologists are termed as classical K. pneumoniae (cKP). A strain with capsule-associated mucopolysaccharide web is known as hypervirulent K. pneumoniae (hvKP) as it enhances the serum resistant and biofilm production. Aim is to determine and correlate various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated cKP and hvKP from respiratory tract infected patients. A total of 96 K. pneumoniae strains were isolated from sputum of respiratory tract infected patients. The isolates were performed string test, AST, ESBL virulence gene, serum bactericidal and biofilm assays. Out of 96 isolates, 39 isolates (40.6%) were identified with hypervirulent phenotypes. The number of cKP exhibiting resist­ance to the tested antimicrobials and ESBLs were significantly higher than that of the hvKP strains. The virulence genes of K. pneumoniae such as K1, K2, rmpA, uge, kfu and aerobactin were strongly associated with hvKP than cKP. However, no significant difference was found in FIM-1 and MrKD3 genes. ESBL producing cKP and hvKP were significantly associated with strong biofilm formation (both P < 0.05) and highly associated with bactericidal effect of serum (both P < 0.05) than cKP strains. However, neither biofilm formation nor bactericidal effect of serum was found with significant difference in between ESBL producing cKP and ESBL producing hvKP strains (both P > 0.05). Although the hvKP possess more virulence gene, but they didn’t show any significant difference between biofilm formation and bactericidal effect of serum compared with ESBL producing cKP strains.

Content not available PDF Share



NNIS. 1997. National nosocomial infections surveillance (NNIS) report, data summary from october 1986-april 1997, issued may 1997. A report from the NNIS system. Am. J. Infect. Control. 25(6): 477–487.


Benge G.R. 1988. Bactericidal activity of human serum against strains of Klebsiella from different sources. J. Med. Microbiol. 27(1): 11–15.


Bonnet R. 2004. Growing group of extended-spectrum beta-lactamases: The ctx-m enzymes. Antimicrob. Agents Chemother. 48(1): 1–14.


Brisse S., C. Fevre, V. Passet, S. Issenhuth-Jeanjean, R. Tournebize,L. Diancourt and P. Grimont. 2009. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 4(3): e4982.


Bush K., G.A. Jacoby and A.A. Medeiros. 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39(6): 1211–1233.


Clinical and laboratory standards institute (CLSI). 2015. Performance standards for antimicrobial susceptibility testing. In Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing.


Darfeuille-Michaud A., C. Jallat, D. Aubel, D. Sirot, C. Rich, J. Sirot and B. Joly. 1992. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect. Immun. 60(1): 44–55.


Decre D., C. Verdet, A. Emirian, T. Le Gourrierec, J.C. Petit, G. Offenstadt, E. Maury, S. Brisse and G. Arlet. 2011. Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in france. J. Clin. Microbiol. 49(8): 3012–3014.


Fang C.T., Y.P. Chuang, C.T. Shun, S.C. Chang and J.T. Wang. 2004. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med. 199(5): 697–705.


Fang C.T., S.Y. Lai, W.C. Yi, P.R. Hsueh, K.L. Liu and S.C. Chang. 2007. Klebsiella pneumoniae genotype k1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect. Dis. 45(3): 284–293.


Fung C.P., F.Y. Chang, S.C. Lee, B.S. Hu, B.I. Kuo, C.Y. Liu, M. Ho and L.K. Siu. 2002. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype k1 an important factor for complicated endophthalmitis? Gut. 50(3): 420–424.


Farmer J.J. III 2003. Enterobacteriaceae: introduction and identification, manual of clinical microbiology, 8th ed. ASM Press, Washington, DC.


Kenne L., B. Lindberg, J.K. Madden, A. A. Lindberg and P. Gemski Jr. 1983. Structural studies of the Escherichia coli o-antigen 25. Carbohydr. Res. 122(2): 249–256.


Ko W.C., D.L. Paterson, A.J. Sagnimeni, D.S. Hansen, A. Von Gottberg, S. Mohapatra, J.M. Casellas, H. Goossens, L. Mulazimoglu, G. Trenholme and others. 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg. Infect. Dis. 8(2): 160–166.


Lai Y.C., H.L. Peng and H.Y. Chang. 2003. rmpa2, an activator of capsule biosynthesis in Klebsiella pneumoniae cg43, regulates k2 cps gene expression at the transcriptional level. J. Bacteriol. 185(3): 788–800.


Li W., G. Sun, Y. Yu, N. Li, M. Chen, R. Jin, Y. Jiao and H. Wu. 2014. Increasing occurrence of antimicrobial-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in China. Clin. Infect. Dis. 58(2): 225–232.


Lin Y.T., Y.Y. Jeng, T.L. Chen and C.P. Fung. 2010. Bacteremic community-acquired pneumonia due to Klebsiella pneumoniae: alinical and microbiological characteristics in Taiwan, 2001–2008. BMC Infect. Dis. 10: 307.


Ma L.C., C.T. Fang, C.Z. Lee, C.T. Shun and J.T. Wang. 2005. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J. Infect. Dis. 192(1): 117–128.


Paterson D.L. and R.A. Bonomo. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 18(4): 657–686.


Podschun R., D. Sievers, A. Fischer and U. Ullmann. 1993. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of klebsiella isolates causing human urinary tract infections. J. Infect. Dis. 168(6): 1415–1421.


Podschun R. and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11(4): 589–603.


Pomakova D.K., C.B. Hsiao, J.M. Beanan, R. Olson, U. MacDonald,Y. Keynan and T.A. Russo. 2012. Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumoniae: an emerging and under-recognized pathogenic variant. Eur. J. Clin. Microbiol. Infect. Dis. 31(6): 981–989.


Quinn P.J., M.E. Carter, B.K. Markey and G.E. Cartey. 1994. Clinical veterinary microbiology. Section-2. Bacteriology, edition. Mosby-Year Book Europe Limited: Lynton House, London, England.


Sahly H., H. Aucken, V.J. Benedi, C. Forestier, V. Fussing, D.S. Hansen, I. Ofek, R. Podschun, D. Sirot, J.M. Tomas, D. Sandvang and U. Ullmann. 2004. Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 48(9): 3477–3482.


Stepanovic S., D. Vukovic, V. Hola, G. di Bonaventura, S. Djukic,I. Cirkovic and F. Ruzicka. 2007. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8): 891–899.


Su S.C., L.K. Siu, L. Ma, K.M. Yeh, C.P. Fung, J.C. Lin and F.Y. Chang. 2008. Community-acquired liver abscess caused by serotype k1 Klebsiella pneumoniae with ctx-m-15-type extended-spectrum beta-lactamase. Antimicrob. Agents Chemother. 52(2):804–805.


Tomas J.M., V.J. Benedi, B. Ciurana and J. Jofre. 1986. Role of capsule and o antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect. Immun. 54(1): 85–89.


Wacharotayankun R., Y. Arakawa, M. Ohta, K. Tanaka, T. Akashi, M. Mori and N. Kato. 1993. Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by rmpa2, which shows homology to ntrc and fixj. Infect. Immun. 61(8): 3164–3174.


Wang J.H., Y.C. Liu, S.S. Lee, M.Y. Yen, Y.S. Chen, J.H. Wang,S.R. Wann and H.H. Lin. 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin. Infect. Dis. 26(6): 1434–1438.


Watnick P. and R. Kolter. 2000. Biofilm, city of microbes. J. Bacteriol. 182(10): 2675–2679.


Wu M.C., T.L. Lin, P.F. Hsieh, H.C. Yang and J.T. Wang. 2011. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 6(8): e23500.


Yang D. and Z. Zhang. 2008. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum beta-lactamases. J. Hosp. Infect. 68(4): 369–371.


Yu V.L., D.S. Hansen, W.C. Ko, A. Sagnimeni, K.P. Klugman, A. von Gottberg, H. Goossens, M.M. Wagener, V.J. Benedi and Group International Klebseilla Study. 2007. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg. Infect. Dis. 13(7): 986–993.