Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 2 (June 2017) > List of articles

Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It

Jesús A. Morlett Chávez / Jorge Á. Ascacio Martínez / William E. Haskins / Hugo A. Barrera Saldaña * / Karim Acuña Askar

Keywords : Pseudomonas spp. BTEX, dioxygenases, LC/MS/MS, bioremediation, biodegradation

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 2, Pages 189-199, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 21-September-2016 / Accepted: 06-December-2016 / Published Online: 28-June-2017



Pseudomonas putida strain (HM346961) was isolated from a consortium of bacteria acclimatized to unleaded gasoline-contaminated water. The consortium can efficiently remove benzene, toluene, ethylbenzene and xylene (BTEX) isomers, and a similar capability was observed with the P. putida strain. Proteome of this strain showed certain similarities with that of other strains exposed to the hydrocarbon com­pounds. Furthermore, the toluene di-oxygenase (tod) gene was up-regulated in P. putida strain when exposed to toluene, ethylbenzene, xylene, and BTEX. In contrast, the tod gene of P. putida F1 (ATCC 700007) was up-regulated only in the presence of toluene and BTEX. Several differences in the nucleotide and protein sequences of these two tod genes were observed. This suggests that tod up-regulation in P. putida strain may partially explain their great capacity to remove aromatic compounds, relative to P. putida F1. Therefore, new tod and P. putida strain are promising for various environmental applications.

Content not available PDF Share



Acuna-Askar K., M.A. de la Torre-Torres, M.J. Guerrero-Munoz, M.T. Garza-Gonzalez, B. Chavez-Gomez, I.P. Rodriguez-Sanchezand H.A. Barrera-Saldana. 2006. Biodegradation kinetics ofBTE-OX and MTBE by a diesel-grown biomass. Water Sci. Technol. 53(11): 197–204.


Bagnéris C., R. Cammack and J.R. Mason. 2005. Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida. Appl. Environ. Microb. 71: 1570–1580.


Bell T.H., E. Yergeau, D.F. Juck, L.G. Whyte and C.W. Greer. 2013. Alteration of microbial community structure affects diesel bio-degradation in an Arctic soil. FEMS Microbiol. Lett. 85: 51–61.


Ciric L., J.C. Philp and A.S. Whiteley. 2010. Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol. Lett. 303: 116–122.


Cyplik P., M. Schmidt, A. Szulc, R. Marecik, P. Lisiecki, H.J. Heipieper, M. Owsianiak, M. Vaishtein and L. Chrzanowski. 2011. Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Bioresource Technol. 102: 4347–43562.


Dalvi S., C. Nicholson, F. Najar, B.A. Roe, P. Canaan, S.D. Hartson and B.Z. Fathepure. 2014. Arhodomonas sp. Strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl. Environ. Microb. 80(21): 6664–6676.


Díaz E., A. Fernández, M.A. Prieto and J.L. García. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. R. 65: 523–569.


Dean B.J. 1985. Recent findings on the genetic toxicity of benzene, toluene, xylenes, and phenol. Mutat Res. 145: 153–181.


Demanèche S., C. Meyer, J. Micoud, M. Louwagie, J.C. Willison and Y. Jouanneau. 2004. Identification and functional analysis of two aromatic ring-hydroxylating dioxygenases from a Sphingomonas strain degrading various polycyclic aromatic hydrocarbons. Appl. Environ. Microb. 70: 6714–6725.


Fong K.P., C.B. Goh and H.M. Tan. 1996. Characterization and expression of the plasmid-borne bedD gene from Pseudomonas putida ML2, which codes for a NAD1-dependent cis-benzene dihydrodiol dehydogenase. J. Bacteriol. 178: 5592–5601.


Gescher J., O. Ismail, E. Ölgeschläger, W. Eisenreich, J. Wörth and G. Fuchs. 2006. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J. Bacteriol. 18(8): 2919–2927.


Gibson D.T. and V. Subramanian. 1984. Microbial degradation of aromatic hydrocarbons, pp. 181–252. In: Gibson D.T. (ed.) Microbial degradation of organic compounds. Marcel Dekker, New York, NY.


Kane R.S., A.Y. Chakicherla, P.S. Chain, R. Schmidt, M.W. Shin, T.C. Legler, K.M. Scow, F.W. Larimer, S.M. Lucas, P.M. Richardsonand others. 2007. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J. Bacteriol. 189: 1931–1945.


Kim D., J.C. Chae, G.J. Zylstra, Y.S. Kim, S.K. Kim, N.H. Nam, Y.M. Kim and E. Kim. 2004. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl. Environ. Microb. 70: 7086–7092.


Lawniczak L., E. Kaczorek and A. Olszanowski. 2011. The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World J. Microb. Biot. 27: 1183–1188.


Lima-Morales D., R. Jáuregui, A. Camarinha-Silva, R. Geffers, D.H. Pieper and R. Vilchez-Vargas. 2016. Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long term pollutant stress. Appl Environ Microb. 82(7): 2227–37.


Lisiecki P., L. Chrzanowski, A. Szulc, L. Lawniczak, W. Bialas,M. Dziadas, M. Owsianiak, J. Staniewski, P. Cyplik, R. Marecik and others. 2014. Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel 116:321–327.


Lee S.K., and S.B. Lee. 2001. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene. Appl. Environ. Microb. 56: 270–275.


Maeda T., Y. Takahaxhi, H. Suenaga, A. Suyama, M. Goto andK. Furukawa. 2001. Functional analyses of bph-tod hybrid dioxygenases, which exhibits high degradation activity toward trichoroethylene. J. Biol. Chem. 276: 29833–29838.


Morlett-Chávez J.A., J.A. Ascacio-Martínez, A.M. Rivas-Estilla, J.F. Velázquez-Vadillo, W.E. Haskins, H.A. Barrera-Saldaña and K. Acuña-Askar. 2010. Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Int. Biodeter. Biodegr. 64(7): 581–587.


Owsianiak M., L. Chrzanowski, A. Szulc, J. Staniewski, A. Olszanowski, A.K. Olejnik-Schmidt and H.J. Heipieper. 2009. Bio-degradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Biosource Technol. 100: 1497–1500.


Peters F., D. Heintz, J. Johannes, A. van Dorsselaer and M. Boll. 2007. Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. J. Bacteriol. 189: 4729–4738.


Patrauchan M.A., C. Florizone, S. Eapen, L. Gómez-Gil, B. Sethuraman, M. Fukuda, J. Davies, W.W. Mohn and L.D. Eltis. 2008. roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA. J. Bacteriol. 190: 37–47.


Pieper D.H. and W. Reineke. 2000. Engineering bacteria for bioremediation. Curr. Opin. Biotech. 11: 262–270.


Potter T.L. 1992. Fingerprinting petroleum products: unleadedgasolines, pp. 83–92. In: Kostecki P.T. and E.J. Calabrese (ed.). Petroleum contaminated soils, vol 2. Lewis Publishers, Chelsea, Mich.


Ramos-González M.I., A. Ben-Bassat, M.J. Camposm and J.L. Ramos. 2003. Genetic engineering of a highly solvent-tolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate. Appl. Environ. Microb. 69: 5120–5127.


Sabirova J.S., M. Ferrer, D. Regenhardt, K.N. Timmis andP.N. Golyshin. 2006. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J. Bacteriol. 188: 3763–3773.


Shöber U., C. Thiel and D. Jendrossek. 2000. Poly (3-hydroxyvalerato) depolimerase of Pseudomonas lemoignei. Appl. Environ. Microb. 66(4): 1385–1392.


Smith R.K. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191–206.


Szczepaniak Z., J. Czarny, J. Staninska-Pieta, P. Lisiecki, A. Zgoła-Grześkowiak, P. Cyplik, L. Chrzanowski, L. Wolko, R. Marecik,W. Juzwa and others. 2016. Influence of soil contamination with PAH on microbial community dynamics and expression levelof genes responsible for biodegradation of PAH and production of rhamnolipids. Environ. Sci. Pollut. Res. 23(22): 23043–23056.


Tarasev M., C.S. Kaddis, S. Yin, J.A. Loo, J. Burgner and D.P. Ballou. 2007. Similar enzymes, different strctures: phtalato dyoxigenases is an α3α3 hexamer, not an α3β3 trimer like “normal” rieske oxygenases. Arch. Biochem. Biophys. 466: 31–39.


Tsao C.W., H.G. Song and R. Bartha. 1998. Metabolism of benzene, toluene and xylene hydrocarbons in soil. Appl. Environ. Microb. 64: 4924–4929.


Witzig R., H. Junca, H.J. Hecht and D.H. Pieper. 2006. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: Links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl. Environ. Microb. 72: 3504–3514.


Zylstra, G.J. and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264: 1940–1946.