The Diversity, Growth Promoting Abilities and Anti-microbial Activities of Bacteria Isolated from the Fruiting Body of Agaricus bisporus


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 2 (June 2017) > List of articles

The Diversity, Growth Promoting Abilities and Anti-microbial Activities of Bacteria Isolated from the Fruiting Body of Agaricus bisporus

Quanju Xiang / Lihua Luo / Yuhuan Liang / Qiang Chen / Xiaoping Zhang / Yunfu Gu *

Keywords : cellulase, IAA, isolation from fruiting body, mushroom growth promoting bacteria, phosphate-solubilizing

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 2, Pages 201-207, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 20-October-2016 / Accepted: 12-January-2017 / Published Online: 28-June-2017



Agaricus bisporus plays an important role in ecological processes and is one of the most widely cultivated mushrooms worldwide. Mushroom growth-promoting bacteria have been isolated from casing soil and compost, but microorganisms in the fruiting body have received only a little attention. To get an overview of phylogenetic diversity of microorganisms in the fruiting body of A. bisporus, as well as to screen antimicrobial and mushroom growth-promoting strains, and eventually intensify mushroom production, we isolated and characterized microorganisms from the fruiting body of A. bisporus. In total, 55 bacterial strains were isolated, among which nine isolates represented Actinomycetes. All the isolates were analyzed by 16S rRNA gene RFLP and sixteen representative strains by 16S rRNA gene sequencing. According to the phylogenetic analysis, eleven isolates represented the Gram-positive Bacillus, Lysinibacillus, Paenibacillus, Pandorea and Streptomyces genera, and five isolates belonged to the Gram-negative Alcaligenes and Pseudomonas genera. The bacteria isolated from the fruiting body of A. bisporus had broad-spectrum antimicrobial activities and potential mushroom growth-promoting abilities.

Content not available PDF Share



Ahmad F., I. Ahmad and M. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173–181.


Ali E., A. A. Hossein and R. Mehdi. 2012. Effect of plant growth promoting bacteria (PGPR) on the morphophysiological properties of button mushroom Agaricus bisporus in two different culturing beds. Int. J. Appl. Res. Net. M. 3: 203–212.


Ausubel FM., R. Brent, R. Kingston, D. Moore, J. Seidman,J. Smith and K. Struhl. 1995. Short protocols in molecular biology. NY: John Willey and Sons Inc 29: 130–135.


Bis’ ko N., V. Bilay and T. Elliott. 1995. Effects of Bacillus macerans Fr. on growth of Pleurotus ostreatus (Jacq.: Fr.) Kumm. Dissertation, Proceedings of the 14th international congress on the science and cultivation of edible fungi.


Bric J.M., R.M. Bostock and S.E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized ona nitrocellulose membrane. Appl. Env. Microbiol. 57: 535–538.


Burton K.S., J.F. Smith, D.A. Wood and C.F. Thurston. 1997. Extracellular proteinases from the mycelium of the cultivated mushroom Agaricus bisporus. Mycol. Res. 101: 1341–1347.


Chen S.C., C.W. Qiu, H.G. Tao, W.W. Zhou, Y.C. Qi, Y.Q. Gao, J.W. Shen and L.Y. Qiu. 2013. Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus. Fungal Ecol. 6: 110–118.


Cho Y.S., J.S. Kim, D.E. Crowley and B.G. Cho. 2003. Growth promotion of the edible fungus Pleurotus ostreatus by Fluorescent pseudomonads. FEMS Microbiol. Lett. 218: 271–276.


Eger G. 1972. Experiments and comments on the action of bacteria on sporophore initiation in Agaricus bisporus. Mushroom Sci. 8: 719–725.


Fermor T. and D. Wood. 1981. Degradation of bacteria by Agaricus bisporus and other fungi. J. Gen. Microbiol. 126: 377–387.


Fett W.F., J.M. Wells, P. Cescutti and C. Wijey. 1995. Identification of exopolysaccharides produced by fluorescent pseudomonads associated with commercial mushroom (Agaricus bisporus) production. Appl. Env. Microbiol. 61: 513–517.


Forchetti G., O. Masciarelli, S. Alemano, D. Alvarez and G. Abdala.2007. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76: 1145–1152.


Frey-Klett P., P. Burlinson, A. Deveau, M. Barret, M. Tarkka and A. Sarniguet. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. R. 75: 583–609.


Hallmann J., G. Berg and B. Schulz. 2006. Isolation procedures for endophytic microorganisms, pp. 299–319. In: Microbial root endophytes. Springer-Verlag, Berlin Heidelberg.


Hamdache A., A. Lamarti, J. Aleu and I.G. Collado. 2011. Non-peptide metabolites from the genus Bacillus. J. Nat. Prod. 74: 893–899.


Jeong S.C., Y.T. Jeong, B.K. Yang, R. Islam, S.R. Koyyalamudi, G. Pang, K.Y. Cho and C.H. Song. 2010. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr. Res. 30: 49–56.


Jurak E., A. Patyshakuliyeva, R.P. De Vries, H. Gruppen andM.A. Kabel. 2015. Compost grown Agaricus bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PloS one 10: e0134169.


Kumar G., N. Kanaujia and A. Bafana. 2012. Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol. Res. 167: 220–225.


Larkin M.A., G. Blackshields, N. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, L.M. Wallace, A. Wilm andR. Lopez. 2007. Clustal W. and X. Clustal version 2.0. Bioinformatics 23: 2947–2948.


Li J., G.Z. Zhao, H.H. Chen, H.B. Wang, S. Qin, W.Y. Zhu,L.H. Xu, C.L. Jiang and W.J. Li. 2008. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett. Appl. Microbiol. 47: 574–580.


Liu G., K. F. Chater, G. Chandra, G. Niu and H. Tan. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. R. 77: 112–143.


Maseko T., K. Howell, F.R. Dunshea and K. Ng. 2014. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food chemistry. 146: 327–333.


McDonald I., P. Riley, R. Sharp and A. McCarthy. 1998. Survival of plasmid-containing Bacillus subtilis released into mushroom compost. Microb. Ecol. 36: 51–59.


Morin E., A. Kohler, A.R. Baker, M. Foulongne-Oriol, V. Lombard, L.G. Nagye, R.A. Ohm, P. Atyshakuliyeva, A. Brun andA.L. Aerts. 2012. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc. Natl. Acad. Sci. 109: 17501–17506.


Nautiyal C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265–270.


Ongena M. and P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115–125


Rainey P. 1991. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycol. Res. 95: 699–704.


Shen H., M.J. Chen, Y.C. Zhao and Y.J. Pan. 2008. PCR-DGGE identification of endophytes in Morels (in Chinese). Acta Agriculture Shanghai. 24: 58–60.


Siyoum N.A., K. Surridge and L. Korsten. 2010. Bacterial profiling of casing materials for white button mushrooms (Agaricus bisporus) using denaturing gradient gel electrophoresis. S. Afr. J. Sci. 106: 1–6.


Stojković D., F.S. Reis, J. Glamočlija, A. Ćirić, L. Barros, L.J. Van Griensven, I.C. Ferreira and M. Soković. 2014. Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product-natural preservatives in yoghurt. Food Funct. 5: 1602–1612.


Taechowisan T., J.F. Peberdy and S. Lumyong. 2003. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol. 19: 381–385.


Tamura K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.


Tan R. and W. Zou. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep.18: 448–459.


Teather R.M. and P.J. Wood. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Env. Microbiol. 43: 777–780.


Ulrich K., T. Stauber and D. Ewald. 2008. Paenibacillus – a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tiss. Org. 93: 347–351.


Wang P., Y. Liu, Y. Yin, H. Jin, S. Wang, F. Xu, S. Zhao andX. Geng. 2011. Diversity of microorganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing region. Int. J. Biol. Sci. 7: 209.


Yanagi M. and K. Yamasato. 1993. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107: 115–120.


Zarenejad F., B. Yakhchali and I. Rasooli. 2012. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J. Microbiol. Biotechnol. 28: 99–104.