Effectiveness of Antipseudomonal Antibiotics and Mechanisms of Multidrug Resistance in Pseudomonas aeruginosa

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

5
Reader(s)
28
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 1 (March 2016) > List of articles

Effectiveness of Antipseudomonal Antibiotics and Mechanisms of Multidrug Resistance in Pseudomonas aeruginosa

Mohamed E. El Zowalaty * / Béla Gyetvai

Keywords : Pseudomonas aeruginosa, antibiotics, antimicrobial, carbapenems, efflux pump, mechanisms, metallo-β-lactamases, polymyxins, mutidrug, resistance

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 1, Pages 23-32, DOI: https://doi.org/10.5604/17331331.1197272

License : (CC BY-NC-ND 4.0)

Received Date : 05-January-2015 / Accepted: 26-August-2015 / Published Online: 15-March-2016

ARTICLE

ABSTRACT

Pseudomonas aeruginosa is a leading human pathogen that causes serious infections at various tissues and organs leading to life threaten­ing health problems and possible deadly outcomes. Resistance patterns vary widely whether it is from hospitals or community acquired infections. Reporting resistance profiles to a certain antibiotics provide valuable information in a given setting, but may be extrapolated outside the sampling location. In the present study, P. aeruginosa isolates were screened to determine their susceptibilities against antipseudomonal antimicrobial agents and possible existing mechanisms of resistance were determined. Eighty-six isolates of P. aeruginosa were recovered. Isolates representing different resistance profiles were screened for the existence of three different resistance mechanisms including drug inactivation due to metallo-β-lactamases, drug impermeability by outer membrane proteins and drug efflux. All tested iso­lates showed uniform susceptibility (100%, n = 86/86) to piperacillin, meropenem, amikacin, and polymyxin B. A single isolate was found to be imipenem resistant (99%, n = 85/86). The possible mechanisms of resistance of P. aeruginosa to imipenem involve active drug efflux pumps, outer membrane impermeability as well as drug inactivating enzymes. These findings demonstrate the fundamental importance of the in vitro susceptibility testing of antibiotics prior to antipseudomonal therapy and highlight the need for a continuous antimicrobial resistance surveillance programs to monitor the changing resistance patterns so that clinicians and health care officials are updated as to the most effective therapeutic agents to combat the serious outcomes of P. aeruginosa infections.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Abdel R.A.T., S. Hafez, S. Abdelhakam, Z. Ali-Eldin, I. Esmat, M. Elsayed and A. Aboul-Fotouh. 2010. Antimicrobial resistant bacteria among health care workers in intensive care units at Ain Shams University Hospitals. J. Egypt. Soc. Parasitol. 40(1): 71.

 

Al-Tawfiq J.A. 2007. Occurrence and antimicrobial resistance pat¬tern of inpatient and outpatient isolates of Pseudomonas aeruginosa in a Saudi Arabian hospital: 1998–2003. Int. J. Infect. Dis. 11(2): 109–114.

 

Andrews J.M. 2001. Determination of minimum inhibitory concen¬trations. J. Antimicrob. Chemother. 48(suppl. 1): 5–16.

 

Ashour H.M. and A. El-Sharif. 2009. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients. J. Transl. Med. 7: 14.

 

Ayala J., A. Quesada, S. Vadillo, J. Criado and S. Píriz. 2005. Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J. Med. Microbiol. 54(11): 1055–1064.

 

Barbosa T.M. and S.B. Levy. 2000. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updat. 3(5): 303–311.

 

Benčić I. and D. Baudoin. 2001. Imipenem consumption and Gram-negative pathogen resistance to imipenem at Sestre Milosrdnice University Hospital. Acta Clin. Croat. 40: 185–189.

 

Brown P.D. and A. Izundu. 2004. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Rev. Panam. Salud. Publica 16(2): 125–130.

 

Casal M., M. Causse, F. Rodriguez-Lopez and M. Casal. 2012. Antimicrobial resistance in clinical patterns of Pseudomonas aeru¬ginosa (in Spanish). Rev. Esp. Quimioter. 25(1): 37–41.

 

Clinical Laboratory Standards Institute (CLSI). 2015. Perfor¬mance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (M100-S25). Clinical Laboratory Standards Institute. Wayne, Pennsylvania, USA.

 

Danel F., L.M. Hall, B. Duke, D. Gur and D.M. Livermore. 1999. OXA-17, a further extended-spectrum variant of OXA-10 β-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob. Agents. Chemother. 43(6): 1362–1366.

 

Decousser J.W., P. Pina, F. Picot, C. Delalande, B. Pangon, P. Courvalin and P. Allouch. 2003. Frequency of isolation and anti¬microbial susceptibility of bacterial pathogens isolated from patients with bloodstream infections: a French prospective national survey. J. Antimicrob. Chemother. 51(5): 1213–1222.

 

Driscoll J.A., S.L. Brody and M.H. Kollef. 2007. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67(3): 351–368.

 

Drissi M., Z.B. Ahmed, B. Dehecq, R. Bakour, P. Plesiat andD. Hocquet. 2008. Antibiotic susceptibility and mechanisms of beta-lactam resistance among clinical strains of Pseudomonas aeruginosa: first report in Algeria. Med. Mal. Infect. 38(4): 187–191.

 

Dubois V., C. Arpin, M. Melon, B. Melon, C. Andre, C. Frigo and C. Quentin. 2001. Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amika¬cin therapy and analysis of β-lactam resistance. J. Clin. Microbiol. 39(6): 2072–2078.

 

El-Behedy E.M., H. Mohtady, N. Mohamed, F. Amer, H. El Zan¬faly, D. Soud, S. Khalil, Y. El Hendy, T. El Behedy and E. El Gendy. 2002. Incidence of resistance to imipenem among hospital strains of Pseudomonas aeruginosa and surveillance for blaIMP gene. Egypt. J. Med. Microbiol. 13(3): 565–572.

 

El-Kholy A., H. Baseem, G.S. Hall, G.W. Procop and D.L.Longworth. 2003. Antimicrobial resistance in Cairo, Egypt 1999–2000: a survey of five hospitals. J. Antimicrob. Chemother. 51(3):625–630.

 

El-Kholy A., T. Saied, M. Gaber, M. A. Younan, M. Haleim,H. El-Sayed, H. El-Karaksy, H. Bazara’a and M. Talaat. 2012. Device-associated nosocomial infection rates in intensive care units at Cairo University hospitals: First step toward initiating surveil¬lance programs in a resource-limited country. Am. J. Infect. Control. 40(6): e216–20.

 

El Zowalaty M.E. 2012. Alarming Trend of Antibiotic Resistance in Pseudomonas aeruginosa Isolates. Journal of Pure and Applied Microbiology 6(1): 175–183.

 

El Zowalaty M.E., A. Al Thani, T.J. Webster, A.E. El Zowalaty, H.P. Schweizer, G.K. Nasrallah, H.E. Marei and H.M. Ashour. 2015. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology 10(10) 1683–1706.

 

Essack S., C. Connolly and A. Sturm. 2008. Antibiotic use and resistance in public-sector hospitals in KwaZulu-Natal. S. Afr. Med. J. 95(11): 865–70.

 

Farra A., S. Islam, A. Strålfors, M. Sörberg and B. Wretlind. 2008. Role of outer membrane protein OprD and penicillin-binding pro¬teins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int. J. Antimicrob. Agents. 31(5): 427–433.

 

Gerçeker A. A. and B. Gürler. 1995. Invitro activities of various antibiotics, alone and in combination with amikacin against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 36(4): 707–711.

 

Girlich D., T. Naas and P. Nordmann. 2004. Biochemical charac¬terization of the naturally occurring oxacillinase OXA-50 of Pseudo¬monas aeruginosa. Antimicrob. Agents Chemother. 48(6): 2043–2048.

 

Hamilton-Miller J. 2004. Antibiotic resistance from two perspec¬tives: man and microbe. Int. J. Antimicrob. Agents. 23(3): 209–212.

 

Hassan A.M., O. Ibrahim and M. El Guinaidy. 2010. Surveil¬lance of antibiotic use and resistance in Orthopaedic Department in an Egyptian University Hospital. Int. J. Infect. Control. 7(1); doi: 10.3396/ijic.V7i1.001.11.

 

Hong D.J., I.K. Bae, I.-H. Jang, S.H. Jeong, H.-K. Kang and K. Lee. 2015. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother. 47(2): 81–97.

 

Huang S.S., B.J. Labus, M.C. Samuel, D.T. Wan and A.L. Rein¬gold. 2002. Antibiotic resistance patterns of bacterial isolates from blood in San Francisco County, California, 1996–1999. Emerg. Infect. Dis. 8(2): 195–201.

 

Jesudason M.V., A. Kandathil and V. Balaji. 2005. Comparison of two methods to detect carbapenemase and metallo-beta-lactamase production in clinical isolates. Indian J. Med. Res. 121(6): 780–783.

 

Jones R.N., H.S. Sader and M.L. Beach. 2003. Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18 569 strains non-fermentative Gram-negative bacilli iso¬lated in the SENTRY Antimicrobial Surveillance Program (1997–2001). Int. J. Antimicrob. Agents. 22(6): 551–556.

 

Kouda S., M. Ohara, M. Onodera, Y. Fujiue, M. Sasaki, T. Kohara,S. Kashiyama, S. Hayashida, T. Harino and T. Tsuji. 2009. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima.J. Antimicrob. Chemother. 64(1): 46–51.

 

Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685.

 

Landman D., S. Bratu, M. Alam and J. Quale. 2005. Citywide emergence of Pseudomonas aeruginosa strains with reduced sus¬ceptibility to polymyxin B. J. Antimicrob. Chemother. 55(6): 954–957.

 

Landman D., C. Georgescu, D.A. Martin and J. Quale. 2008. Poly¬myxins revisited. Clin. Microbiol. Rev. 21(3): 449–465.

 

Liu Q., X. Li, W. Li, X. Du, J.-Q. He, C. Tao and Y. Feng. 2015. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis. Sci. Rep. 5: 11715.

 

Livermore D.M. 2002. Multiple mechanisms of antimicrobial resis¬tance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34(5): 634.

 

Mavroidi A., E. Tzelepi, A. Tsakris, V. Miriagou, D. Sofianou and L. Tzouvelekis. 2001. An integron-associated β-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1. J. Antimicrob. Chemother. 48(5): 627–630.

 

Nishino K. and A. Yamaguchi. 2004. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J. Bacteriol. 186(5): 1423–1429.

 

Nordmann P. 2010. Gram-negative bacteriae with resistance to car¬bapenems (in French). Med. Sci. (Paris) 26(11): 950–959.

 

Osman K., M. Alabady, N. Ata, N. Ezzeldin and M. Aly. 2010. Genotypic Characterization of Pseudomonas aeruginosa Isolated from Human and Animal Sources in Egypt. Zoonoses and Public Health. 57(5): 329–338.

 

Poirel L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J.D. Cavallo and P. Nordmann. 2000. Characterization of VIM-2, a carbape¬nem-hydrolyzing metallo-β-lactamase and its plasmid and inte¬gron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44(4): 891–897.

 

Poirel L., D. Girlich, T. Naas and P. Nordmann. 2001. OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid-and integron-located gene. Anti-microb. Agents Chemother. 45(2): 447–453.

 

Quale J., S. Bratu, J. Gupta and D. Landman. 2006. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Che¬mother. 50(5): 1633–1641.

 

Queenan A.M. and K. Bush. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20(3): 440–458.

 

Rodriguez-Martinez J.M., L. Poirel and P. Nordmann. 2009. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53(11): 4783–4788.

 

Shehabi A.A., A.A. Haider and M.K. Fayyad. 2011. Frequency of antimicrobial resistance markers among Pseudomonas aeruginosa and Escherichia coli isolates from municipal sewage effluent water and patients in Jordan. The International Arabic Journal of Antimicrobial Agents. 1(1); doi: 10: 3823/700.

 

Song J.H. 2008. What’s new on the antimicrobial horizon? Int.J. Antimicrob. Agents. 32(suppl. 4): S207–213.

 

Strateva T., V. Ouzounova-Raykova, B. Markova, A. Todorova,Y. Marteva-Proevska and I. Mitov. 2007. Problematic clinical iso¬lates of Pseudomonas aeruginosa from the university hospitals in Sofia, Bulgaria: current status of antimicrobial resistance and pre¬vailing resistance mechanisms. J. Med. Microbiol. 56(7): 956–963.

 

Strateva T. and D. Yordanov. 2009. Pseudomonas aeruginosa– a phenomenon of bacterial resistance. J. Med. Microbiol. 58(9): 1133–1148.

 

Suárez C., C. Peņa, L. Gavaldā, F. Tubau, A. Manzur, M. Domin¬guez, M. Pujol, F. Gudiol and J. Ariza. 2010. Influence of car¬bapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int. J. Infect. Dis. 14: e73–e78.

 

Tawfik A.F., A.M. Shibl, M.A. Aljohi, M.A. Altammami and M.H. Al-Agamy. 2012. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns 38(6): 855–60.

 

Van Delden C. and B. H. Iglewski. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4(4): 551.

 

Walsh T.R. 2010. Emerging carbapenemases: a global perspective. Int. J. Antimicrob. Agents. 36(suppl. 3): S8–14.

 

Wolter D.J., N. Khalaf, I.E. Robledo, G.J. Vázquez, M.I. Santé, E.E. Aquino, R.V. Goering and N.D. Hanson. 2009. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: dissemination of KPC and IMP-18 β-lactamases. J. Antimicrob. Chemother. 53(4): 1660–1664.

 

Woodford N., J. Zhang, M.E. Kaufmann, S. Yarde, M. del Mar Tomas, C. Faris, M.S. Vardhan, S. Dawson, S.L. Cotterill and D.M. Livermore. 2008. Detection of Pseudomonas aeruginosa iso¬lates producing VEB-type extended-spectrum β-lactamases in the United Kingdom. J. Antimicrob. Chemother. 62(6): 1265–1268.

 

EXTRA FILES

COMMENTS