Characterization and Optimization of Biosynthesis of Bioactive Secondary Metabolites Produced by Streptomyces sp. 8812


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 1 (March 2016) > List of articles

Characterization and Optimization of Biosynthesis of Bioactive Secondary Metabolites Produced by Streptomyces sp. 8812

Aleksandra Rajnisz / Adam Guśpiel / Magdalena Postek / Joanna Ziemska / Anna Laskowska / Daniel Rabczenko / Jolanta Solecka *

Keywords : Streptomyces sp. 8812, biologically active compounds, media optimization, submerged cultures

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 1, Pages 51-61, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 03-June-2015 / Accepted: 26-November-2015 / Published Online: 15-March-2016



The nutritional requirements and environmental conditions for a submerged culture of Streptomyces sp. 8812 were determined. Batch and fed-batch Streptomyces sp. 8812 fermentations were conducted to obtain high activity of secondary metabolites. In the study several factors were examined for their influence on the biosynthesis of the active metabolites-7-hydroxy-6-oxo-2,3,4,6-tetrahydroisoquinoline-3-carboxyl acid (C10H9NO4) and N-acetyl-3,4-dihydroxy-l-phenylalanine (C11H13NO5): changes in medium composition, pH of production medium, various growth phases of seed culture, amino acid supplementation and addition of anion exchange resin to the submerged culture. Biological activities of secondary metabolites were examined with the use of dd-carboxypeptidase 64–575 and horseradish peroxidase. Streptomyces sp. 8812 mycelium was evaluated under fluorescent microscopy and respiratory activity of the strain was analyzed. Moreover, the enzymatic profiles of the strain with the use of Api®ZYM test were analyzed and genetic analysis made. Phylogenetic analysis of Streptomyces sp. 8812 revealed that its closest relative is Streptomyces capoamus JCM 4734 (98%), whereas sequence analysis for 16S rRNA gene using NCBI BLAST algorithm showed 100% homology between these two strains. Biosynthetic processes, mycelium growth and enzyme inhibitory activities of these two strains were also compared.

Content not available PDF Share



Adam M., C. Damblon, M. Jamin, W. Zorzi, V. Dusart, M. Gal¬leni, A. el Kharroubi, G. Piras, B.G. Spratt and W. Keck. 1991. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279(Pt 2): 601–604.


Adam M., C. Damblon, B. Plaitin, L. Christiaens and J.M. Frére. 1990. Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive dd-peptidases. Biochem. J. 270(2): 525–529.


Arai T. and Y. Mikami. 1972. Chromogenicity of Streptomyces. Appl. Microbiol. 23(2): 402–406.


BD Biosciences. 2006. BD Bionutrients™ Technical Manual. Third Edition Revised, pp. 28, 42 and 52.¬calCenter/misc/br_3_2547.pdf, 2015.06.03


Casey J.T., P.K. Walsh and D.G. O’Shea. 2007. Characterisation of adsorbent resins for the recovery of geldanamycin from fermenta¬tion broth. Sep. Purif. Technol. 53(3): 281–288.


Chance B. and A.C. Maehly. 1955. Assay of Catalases and Peroxi¬dases. Meth. Enzymol. 2:764–775.


Chen X.S., S. Li, L.J. Liao, X.D. Ren, F. Li, L. Tang, J.H. Zhang and Z.G. Mao. 2011. Production of ε-poly-l-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess Biosyst. Eng. 34(5): 561–567.


Coenye T., E. Falsen, M. Vancanneyt, B. Hoste, J.R. Govan, K. Kersters and P. Vandamme. 1999. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical sam¬ples as Ralstonia gilardii sp. nov. Int. J. Syst. Bacteriol. 49(2): 405–413.


De Azeredo L.A., M.B. De Lima, R.R. Coelho and D.M. Freire. 2006. A low-cost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and corn steep liquor. Curr. Microbiol. 53(4): 335–339.


Denser Pamboukian C.R., L.M. Guimaraes and M.C.R. Facciotti. 2002. Applications of image analysis in the characterization of Strep¬tomyces olindensis in submerged culture. Braz. J. Microbiol. 33(1): 17–21.


Desai R.P., T. Leaf, E. Woo and P. Licari. 2002. Enhanced produc¬tion of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor. J. Ind. Microbiol. Biotechnol. 28(5): 297–301.


Edwards U., T. Rogall, H. Blocker, M. Emde and E.C. Bottger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17(19): 7843–7853.


Frère J.M., M. Leyh-Bouille, J.M. Ghuysen, M. Nieto and H.R. Per¬kins. 1976. Exocellular dd-carboxypeptidases-transpeptidases from Streptomyces. Methods Enzymol. 45:610–636.


Genilloud O., I. Gonzalez, O. Salazar, J. Martin, J.R. Tormo and F. Vicente. 2011. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 38(3): 375–389.


Goncalves da L.O., M.F. Delle, I.L. D’Albuquerque and G.B. Marini Bettolo. 1968. The identification of ciclacidine an antibiotic from Streptomyces capoamus sp. nov. Tetrahedron. Lett. 4: 471–473.


Hayakawa Y., T. Iwakiri, K. Imamura, H. Seto and N. Otake. 1985. Studies on the isotetracenone antibiotics. I. Capoamycin, a new anti¬tumor antibiotic. J. Antibiot. (Tokyo) 38(7): 957–959.


Hopwood D.A. 2007. Streptomyces in nature and medicine. The antibiotic makers. Oxford University Press, New York.


Jia B., Z.H. Jin, Y.L. Lei, L.H. Mei and N.H. Li. 2006. Improved production of pristinamycin coupled with an adsorbent resin in fer¬mentation by Streptomyces pristinaespiralis. Biotechnol. Lett. 28(22): 1811–1815.


Kegg Pathway Maps. 2014. Isoquinoline alkaloid biosynthesis. http:// www.genome. jp/kegg-bin/show_pathway?map00950, 2015.06.03.


Keller and Heckmann LPP. 2006. Assessment Plan for Corn Steep Liquor (CAS #66071-94-1) in Accordance with the USEPA High Production Volume Chemical Challenge Program. http://www.epa. gov/HPV/pubs/summaries/cornstlq/C16469tp.pdf, 2015.06.03.


Lee J.C., H.R. Park, D.J. Park, H.B. Lee, Y.B. Kim and C.J. Kim. 2003. Improved production of teicoplanin using adsorbent resin in fermentations. Lett. Appl. Microbiol. 37(3):196–200.


Lehmann H.P., K.H. Schosinsky and M.F. Beeler. 1974. Standard¬ization of serum ceruloplasmin concentrations in international enzyme units with o-dianisidine dihydrochloride as substrate. Clin. Chem. 20(12): 1564–1567.


Liao X., L.C. Vining and J.L. Doull. 1995. Physiological control of trophophase-idiophase separation in streptomycete cultures pro¬ducing secondary metabolites. Can. J. Microbiol. 41(4–5): 309–315.


Ortiz S.C.A., C.O. Hokka and A.C. Badino. 2007. Utilization of soybean derivatives on clavulanic acid production by Streptomyces clavuligerus. Enzyme Microb Technol. 40(5): 1071–1077.


R Foundation for Statistical Computing. 2013. A language and environment for statistical computing. http://www.r-project org/, 2015.06.03.


Shirling E.B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16(3): 313–340.


Singh V., C.K.M. Tripathi and V. Bihari. 2008. Production, opti¬mization and purification of an antifungal compound from Strep¬tomyces capoamus MTCC 8123. Med. Chem. Res. 17(2–7): 94–102.


Solecka J. and W. Kurzątkowski. 1999. Affinity of exocellular DD-carboxypeptidase/transpeptidase from Saccharopolyspora erythraea PZH TZ 64–575 to beta-lactam compounds (in Polish). Med. Dośw. Mikrobiol. 51: 151–165.


Solecka J., R. Lysek, B. Furman, M. Chmielewski and W. Kurzat¬kowski. 2003. Practical use of dd-peptidase 64–575 for the assay of inhibition activity of natural and synthetic beta-lactam compounds. Acta Pol. Pharm. 60(2): 115–118.


Solecka J., A. Rajnisz and A.E. Laudy. 2009a. A novel isoquinoline alkaloid, dd-carboxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part I: Taxonomy, fermenta¬tion, isolation and biological activities. J. Antibiot. (Tokyo) 62(10): 575–580.


Solecka J., J. Sitkowski, W. Bocian, E. Bednarek, R. Kawecki and L. Kozerski. 2009b. A novel isoquinoline alkaloid, dd-carboxypepti¬dase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part II: Physicochemical properties and structure elucida¬tion. J. Antibiot. (Tokyo) 62(10): 581–585.


Solecka J., A. Rajnisz, M. Postek, J. Zajko, R. Kawecki, V. Hav¬licek, E. Bednarek and L. Kozerski. 2012a. N-acetyl-3,4-dihydroxy-l-phenylalanine, a second identified bioactive metabolite produced by Streptomyces sp. 8812. J. Antibiot. (Tokyo) 65(4): 219–221.


Solecka J., J. Zajko, A. Rajnisz and M.A. Postek. 2012b. Searching for novel, bioactive compounds derived from nature (in Polish). Gaz. Farmaceutyczna 1:36–38.


Tsueng G. and K.S. Lam. 2007. Stabilization effect of resin on the production of potent proteasome inhibitor NPI-0052 during submerged fermentation of Salinispora tropica. J. Antibiot. (Tokyo) 60(7): 469–472.


Zhang L.J., Z.H. Jin, X.G. Chen, Q.C. Jin, and M.G. Feng. 2012. Glycine feeding improves pristinamycin production during fermen¬tation including resin for in situ separation. Bioprocess Biosyst. Eng. 35(4): 513–517.


Zhinan X. and C. Peilin. 1999. Enhanced production of avermectin B1a by medium optimization and glucose feeding with Streptomyces avermilitis. Bioprocess Biosyst. Eng. 20(1): 67–71.


Zou X., H.F. Hang, J. Chu, Y.P. Zhuang, and S.L. Zhang. 2009. Oxygen uptake rate optimization with nitrogen regulation for eryth¬romycin production and scale-up from 50 l to 372 m3 scale. Bioresour. Technol. 100(3): 1406–1412.


Zou X., W.J. Li, W. Zeng, J. Chu, Y.P. Zhuang and S.L. Zhang. 2011. An assessment of seed quality on erythromycin production by recombinant Saccharopolyspora erythraea strain. Bioresour. Technol. 102(3): 3360–3365.