Biochemical and Molecular Characterization of Carotenogenic Flavobacterial Isolates from Marine Waters


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 1 (March 2016) > List of articles

Biochemical and Molecular Characterization of Carotenogenic Flavobacterial Isolates from Marine Waters

Rama Sowmya / Nakkarike M. Sachindra *

Keywords : Arenibacter sp., Flavobacteriaceae, Formosa sp., Vitellibacter sp., carotenoid, zeaxanthin

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 1, Pages 77-88, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 09-January-2015 / Accepted: 19-April-2015 / Published Online: 15-March-2016



Carotenoids are known to possess immense nutraceutical properties and microorganisms are continuously being explored as natural source for production of carotenoids. In this study, pigmented bacteria belonging to Flavobacteriaceae family were isolated using kanamycin-containing marine agar and identified using the molecular techniques and their phenotypic characteristics were studied along with their potential to produce carotenoids. Analysis of random amplification of polymorphic DNA (RAPD) banding patterns and the fragment size of the bands indicated that the 10 isolates fall under two major groups. Based on 16S rRNA gene sequence analysis the isolates were identified as Vitellibacter sp. (3 isolates), Formosa sp. (2 isolates) and Arenibacter sp. (5 isolates). Phenotypically, the isolates showed slight variation from the reported species of these three genera of Flavobacteriaceae. Only the isolates belonging to Vitellibacter and Formosa produced flexirubin, a typical yellow orange pigment produced by most of the organisms of the family Flavobacteriaceae. Vitellibacter sp. and Formosa sp. were found to produce higher amount of carotenoids compared to Arenibacter sp. and zeaxanthin was found to be the major carotenoid produced by these two species. The study indicated that Vitellibacter sp. and Formosa sp. can be exploited for production of carotenoids, particularly zeaxanthin.

Content not available PDF Share



Alcantara S. and S. Sanchez. 1999. Influence of carbon and nitro¬gen sources on Flavobacterium growth and zeaxanthin biosynthesis. J. Ind. Microbiol. Biotechnol. 23: 697–700.


Bauer A.W., M. Kirby, J.C. Sherris and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Ame. J. Clin. Pathol. 45: 493–496.


Bhosale P. and P.S. Bernstein. 2004. β-carotene production by Fla¬vobacterium multivorum in the presence of inorganic salts and urea. J. Ind. Microbiol. Biotechnol. 31: 565–571.


Bhosale P., A.J. Larson and P.S. Bernstein. 2004. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxan¬thin production from Flavobacterium multivorum. J. Appl. Microbiol. 96: 623–629.


Bone R.A., J.T. Landrum, Y. Cao, A.N. Howard and F.A. Calde¬ron. 2007. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutri Metabol. 4: 12–19.


Carpenter K.L., C. van der Veen, R. Hird, I.F. Dennis, T. Ding and M.J. Mitchinson. 1997. The carotenoids beta-carotene, canthaxan¬thin and zeaxanthin inhibit macrophage-mediated LDL oxidation. FEBS Lett. 401: 262–266.


Chart H. 1994. Bacterial fractionation and membrane protein characterization, pp. 1–10. In: Chart H. (ed). Methods in practical laboratory bacteriology. CRC Press, Boca Raton.


Decostere A. 2002. Flavobacterium columnare infections in fish: the agent and its adhesion to the gill tissue. Verh. K. Acad. Geneeskd. Belg. 64: 421–430.


Fautz E. and H. Reichenbach. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8: 87–91.


Flint K. 1985. A note on a selective agar medium for the enu¬meration of Flavobacterium species in water. J. Appl. Bacteriol. 59: 561–566.


Ivanova E.P., Y.A. Alexeeva, S. Flavier, J.P. Wright, N.V. Zhukova, N.M. Gorshkova, V.V. Mikhailov, D.V. Nicolau and R. Christen. 2004. Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Sys. Evol. Microbiol. 54: 705–711.


Ivanova E.P., O.I. Nedashkovskaya, J. Chun and A.M. Lysenko. 2001. Arenibacter gen. nov., new genus of the family Flavobacteria¬ceae and description of a new species, Arenibacter latericius sp. nov. Int. J. Sys. Evol. Microbiol. 51: 1987–1995.


Johnson E.A. and W.A. Schroeder. 1995. Zeaxanthin-containing compositions produced by Flavobacterium multivorum. US patent 5427783 A. June 27, 1995.


Kim B. S., O.S. Kim, E.Y. Moon and J. Chun. 2010. Vitellibacter aestuarii sp. nov., isolated from tidal-flat sediment, and an emended description of the genus Vitellibacter. Int. J. Sys. Evol. Microbiol. 60: 1989–1992.


Krinsky N.I. 1989. Antioxidant functions of carotenoids. Free Rad Biol Med. 7: 617–635.


Kumar S., M. Nei, J. Dudley and K. Tamura. 2008. Mega: A biolo¬gist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinfor. 9: 299–306.


Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–684.


Manh H.D., Y. Matsuo, A. Katsuta, S. Matsuda, Y. Shizuri and H. Kasai. 2008. Robiginitalea myxolifaciens sp. nov., a novel myxol-producing bacterium isolated from marine sediment, and emended description of the genus Robiginitalea. Int. J. Sys. Evol. Microbiol. 58: 1660–1664.


Masetto A., L.B. Flores-Cotera, C. Diaz, E. Langley and S. Sanchez. 2001. Application of a complete factorial design for the production of zeaxanthin by Flavobacterium sp. J. Biosci. Bioeng. 92: 55–58.


McDougall L.A., W.H. Holzapfel, U. Schillinger, D.E. Feely and J.H. Rupnow. 1994. Scanning electron microscopy of target cells and molecular weight determination for bacteriocin produced by Lactococcus lactis D53. Int. J. Food. Microbiol. 24: 295–308.


Nedashkovskaya O.I., M. Suzuki, M.V. Vysotskii and V.V. Mikhailov. 2003a. Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga-Flavobacterium-Bacteroides. Int. J. Sys. Evol. Microbiol. 53: 1281–1286.


Nedashkovskaya O.I., M. Suzuki, M.V. Vysotskii and V.V. Mikhailov. 2003b. Arenibacte rtroitsensis sp. nov., isolated from marine bottom sediment. Int. J. Sys. Evol. Microbiol. 53: 1287–1290.


Nedashkovskaya O.I., S.B. Kim, S.K. Han, A.M. Lysenko, V.V. Mikhailov and K.S. Bae. 2004. Arenibacter certesii sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata. Int. J. Sys. Evol. Microbiol. 54: 1173–1176.


Nedashkovskaya O.I., S.B. Kim, M. Vancanneyt, C. Snau¬waert, A.M. Lysenko, M. Rohde, G.M.Frolova, N.V. Zhukova, V.V. Mikhailov, K.S. Bae and others. 2006a. Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. Int. J. Sys. Evol. Microbiol. 56: 161–167.


Nedashkovskaya O.I, M. Vancanneyt,I. Cleenwerck, C. Snau¬waert, S.B. Kim, A.M. Lysenko, L.S. Shevchenko, K.H. Lee,M.S. Park, G.M. Frolova and others. 2006b. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter. Int.J. Sys. Evol. Microbiol. 56: 155–160.


Nedashkovskaya O.I, S.B. Kim, A.M. Lysenko, K.H. Lee, K.S. Bae and V.V. Mikhailov. 2007. Arenibacter echinorum sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Sys. Evol. Microbiol. 57: 2655–2659.


Nematollahi A., A. Decostere, F. Pasmans and F. Haesebrouck. 2003. Flavobacterium psychrophilum infections in salmonid fish. J. Fish Dis. 26: 563–574.


Nishino H., H. Tokuda, M. Satomi, P. Masuda, P. Bu, M. Onozuka, S. Yamaguchi, Y. Okuda, J. Takayasu, J. Tsuruta and others. 1999. Cancer prevention by carotenoids. Pure. Appl. Chem. 71: 2273–2278.


Park S., K.C. Lee, K.S. Bae and J.H. Yoon. 2014. Vitellibacter soesokkakensis sp. nov., isolated from the junction between the ocean and a freshwater spring and emended description of the genus Vitel¬libacter. Int. J. Sys. Evol. Microbiol. 64: 588–593.


Rählert N., P.D. Fraser and G. Sandmann. 2009. A crtA-relatedgene from Flavobacterium P99-3 encodes a novel carotenoid 2-hydroxylase involved in myxol biosynthesis. FEBS Lett. 583: 1605–1610.


Reichenbach H., W. Kohl, A.B. Vetter and H. Achenbach. 1980. Flexirubin-type pigments in Flavobacterium. Arch. Microbiol. 126: 291–293.


Roberts R., J. Green and B. Lewis. 2009. Lutein and zeaxanthin in eye and skin health. Clinics. Dermatol. Neutra. Part II. 27: 195–201.


Sajilata M.G., R.S. Singhal and M.Y. Kamat. 2008. The Carotenoid Pigment Zeaxanthin – A Review. Compr. Rev. Food Sci. Food Safety. 7: 29–49.


Sambrook J. and R.W. Russell. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.


Schillinger U., N.M.K. Yousif, L. Sesar and C.M.A.P. Franz. 2003. Use of group-specific and RAPD-PCR analyses for 400 rapid dif-ferentiation of Lactobacillus strains from probiotic yogurts. Curr Microbiol. 47: 453–456.


Shindo K., K. Kikuta, A. Suzuki, A. Katsuta, H. Kasai, M.Y. Hirose, Y. Matsuo, N. Misawa and S. Takaichi. 2007. Rare carot¬enoids, (3R)-saproxanthin and (3R,2’S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activi¬ties. Appl. Microbiol. Biotechnol. 74: 1350–1357.


Sowmya R. and N.M. Sachindra. 2011.Carotenoids in aquatic resources: occurrence, recovery, application and biofunctions, pp. 75–118. In: Yamaguchi M. (ed). Carotenoids: Properties, Effects and Diseases. Nova Publishers, USA.


Stafsnes M.H. and P. Bruheim. 2013. Pigmented marine hetero¬trophic bacteria: occurrence, diversity and characterization of pig-mentation, pp. 117–148. In: Kim S.K. (ed). Marine Biomaterials: Characterization, Isolation and Applications.CRC Press, Boca Raton.


Statsoft. 1999. Statistics for windows. Statsoft Inc, Tulsa, USA.


Sun F., B. Wang, Y. Du, X. Liu, Q. Lai, G. Li, J. Luo and Z. Shao. 2010. Arenibacter nanhaiticus sp. nov., isolated from marine sedi¬ment of the South China Sea. Int. J. Sys. Evol. Microbiol. 60: 78–83.


Walia T.M., T. Williamson, A. Kaiser and R. Tewari. 1988. Useful¬ness of protein patterns, serotyping and plasmid DNA profiles in the epidemiologic finger printing of P. aeruginosa. Eur. J. Clin. Microbiol. Infect Dis. 7: 248–255.