Enterobacter asburiae KUNi5, a Nickel Resistant Bacterium for Possible Bioremediation of Nickel Contaminated Sites

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

6
Reader(s)
8
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 1 (March 2016) > List of articles

Enterobacter asburiae KUNi5, a Nickel Resistant Bacterium for Possible Bioremediation of Nickel Contaminated Sites

Anirudha Paul / Samir Kumar Mukherjee *

Keywords : Enterobacter sp., bioremediation, nickel

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 1, Pages 115-118, DOI: https://doi.org/10.5604/17331331.1197284

License : (CC BY-NC-ND 4.0)

Received Date : 06-February-2015 / Accepted: 31-May-2015 / Published Online: 15-March-2016

ARTICLE

ABSTRACT

Nickel resistant bacterial strain Enterobacter asburiae KUNi5 was isolated and showed resistance up to 15 mM and could remove Ni opti­mally better at 37°C and pH 7. Maximum removal was found at initial concentration of 0.5 to 2 mM, however, growth and Ni removal were affected by other heavy metals. Major amount of the metal was accumulated in the membrane fractions and certain negatively charged groups were found responsible for Ni binding. KUNi5 could also produce 1-aminocyclopropane-1-carboxylate deaminase, indole-acetic acid and siderophore. It seems that KUNi5 could be a possible candidate for Ni detoxification and plant growth promotion in Ni-contaminated field.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Ahemad M. and M.S. Khan. 2010. Plant growth promoting activities of phosphate solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia. J. Bio. Sci. 4: 88–95.

 

Altschul S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 219: 403–410.

 

Anand P., J. Isar, S. Saran and R.K. Saxena. 2006. Bioaccumulation of copper by Trichoderma viride. Bioresour. Technol. 91: 1018–1025.

 

Burd G.I., G.D. Dixon and B.R. Glick. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237–245.

 

Cecchie C.G.S. and C. Zanchi. 2005. Phytoremediation of soil polluted by nickel using agricultural crops. Environ. Manage. 36: 675–681.

 

Cha J.S. and D.A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Aca. Sci. USA 88: 8915–8919.

 

Das P., S. Sinha and S.K. Mukherjee. 2014. Nickel bioremidiation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Bioremed. J. 18(2): 169–177.

 

Denton B. 2007. Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445. Basic. Biotechnol. J. 3: 1–5.

 

Desale P., D. Kashyap, N. Nawani, N. Nahar, A. Rahman, B. Kapadnis and A. Mandal. 2014. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine. Ecotoxicol. Environ. Saf. 107: 260–268.

 

Dworken M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592–601.

 

Faisal M. and S. Hasnain. 2006. Plant growth promotion by Brevibacterium under chromium stress. Res. J. Bot. 1: 24–29.

 

Fu C. and R.J. Maier. 1991. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH. Appl. Environ. Microbiol. 57: 3511–3516.

 

Gadd G.M. 1988. Accumulation of metals by microbes and algae. Biotechnology 60: 401–430.

 

Hussein H., S.F. Ibrahim, K. Kandeel and H. Moawad. 2004. Biosorption of heavy metals from waste water using Pseudomonas sp. eJ. Biotechnol. 7(1). doi: 10.2225/vol7-issue1-fulltext-2.

 

Jiang W., A. Saxena, B. Song, B.B. Ward, T.J. Beveridge andS.C.B. Myneni. 2004. Elucidation of functional groups on gram positive and gram negative bacterial surfaces using infrared spectroscopy. Langmuir 20: 11433–11442.

 

Kaltwasser H. and W. Frings. 1980. Transport and metabolism of nickel in microorganisms, pp. 463–491. In: Nriagu J.O. (ed). Nickel in the environment. John Wiley & Sons, New York.

 

Khodadoust A.P., K.R. Reddy and K. Maturi. 2004. Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ. Eng. Sci. 21: 691–704.

 

Nies D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730–750.

 

Patel J.S., C.P. Patel and K. Kalia. 2006. Isolation and characterization of nickel uptake by nickel resistant bacterial isolate (NiRBI). Biomed. Environ. Sci. 19: 297–301.

 

Rajkumar M. and H. Freitas. 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71: 834–842.

 

Salvador M., G. Carolina and E. Jose. 2007. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl. Environ. Microbiol. 73(19): 6001–6011.

 

Sanders J.R., S.P. Mc Grath and T. Adams. 1987. Zn, Cu, and Ni concentration in soil extracts and crops grown on four soils treated with metal loaded sewage sludges. Environ. Pollut. 44: 193–210.

 

Sar P., S.K. Kazy and S.P. Singh. 2001. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett. Appl. Microbiol. 32: 257–261.

 

Sar P., S.K. Kazy, R.K. Asthana and S.P. Singh. 1998. Nickel uptake by Pseudomonas aeruginosa: role of modifying factors. Current. Microbiol. 37: 306–311.

 

Sau G.B., S. Chatterjee and S.K. Mukherjee. 2008. Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Pol. J. Microbiol. 57: 327–332.

 

Schwyn B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical. Biochem. 160: 47–56.

 

Singh S., M. Zacharias, S. Kalpana and S. Mishra. 2012. Heavy metal accumulation and distribution pattern in different vegetable crops. J. Environ. Chem. Ecotoxicol. 4(10): 170–177.

 

Sosa-Morales M.E., F. Guevara-Lara, V.M. Martinez-Juarez and O. Paredes-Lopez. 1997. Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Appl. Microbiol. Biotechnol. 48: 726–729.

 

Vos P., G. Garrity, D. Jones, N.R. Krieg,W. Ludwig, F.A. Rainey, K.H. Schleifer and W. Whitman. 2009. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Vol. 3., Springer, New York, USA.

 

Zhao H., H. Yan, S. Zhou, Y. Xue, C. Zhang, Lihuozhang, X. Dong, Q. Cui, Y. Zhang, B. Zhang and Z. Zhang. 2011. The growth promotion of mung bean (Phaseolus radiatus) by Enterobacter asburiae HPP16 in acidic soils. Afr. J. Biotechnol. 10(63): 13802–13814.

 

EXTRA FILES

COMMENTS