Streptococcus anginosus (milleri) Group Strains Isolated in Poland (1996–2012) and their Antibiotic Resistance Patterns


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 1 (March 2016) > List of articles

Streptococcus anginosus (milleri) Group Strains Isolated in Poland (1996–2012) and their Antibiotic Resistance Patterns

Katarzyna Obszańska / Izabella Kern-Zdanowicz / Aleksandra Kozińska / Katarzyna Machura / Elżbieta Stefaniuk / Waleria Hryniewicz / Izabela Sitkiewicz *

Keywords : Streptococcus anginosus group, Streptococcus constellatus, Streptococcus intermedius, Streptococcus milleri, antimicrobial resistance, MLVA, MLVF, PFGE

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 1, Pages 33-41, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 01-December-2015 / Accepted: 21-December-2015 / Published Online: 15-March-2016



Streptococcus anginosus, Streptococcus intermedius and Streptococcus constellatus form a group of related streptococcal species, namely the Streptococcus Anginosus Group (SAG). The group, previously called “milleri” had been rarely described until 1980/1990 as source of infections. Nowadays SAG bacteria are often described as pathogens causing predominantly purulent infections. The number of infec­tions is highly underestimated, as SAG strains are often classified in the microbiology laboratory as less virulent “viridans streptococci”. Epidemiological situation regarding SAG infections in Poland has been unrecognized, therefore we performed a retrospective analysis of strains isolated between 1996 and 2012. Strains suspected of belonging to SAG were re-identified using an automated biochemical approach (Vitek2) and MALDI-TOF MS. We performed first analysis of antibiotic resistance among SAG strains isolated in Poland using automated methods (Vitek2), disk diffusion tests and E-Tests. We also performed PCR detection of resistance determinants in antibiotic resistant strains. Clonal structure of analyzed strains was evaluated with PFGE and MLVF methods. All three species are difficult to distinguish using automated diagnostic methods and the same is true for automated MIC evaluation. Our analysis revealed SAG strains are rarely isolated in Poland, predominantly from purulent infections. All isolates are very diverse on the genomic level as estimated by PFGE and MLVF analyses. All analyzed strains are sensitive to penicillin, a substantial group of strains is resistant to macrolides and the majority of strains are resistant to tetracycline.

Content not available PDF Share



Aminov R.I., N. Garrigues-Jeanjean and R.I. Mackie. 2001. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67: 22–32.


Arinto-Garcia R., M.D. Pinho, J. Carrico, J. Melo-Cristino and M. Ramirez. 2015. Comparing MALDI-TOF MS, phenotypic and molecular methods for the identification of species within the Strep¬tococcus anginosus group. J. Clin. Microbiol. 53(11): 3580–3588.


Asam D. and B. Spellerberg. 2014. Molecular pathogenicity of Streptococcus anginosus. Mol. Oral Microbiol. 29: 145–155.


Charpentier E., G. Gerbaud and P. Courvalin. 1993. Characteriza¬tion of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene 131: 27–34.


Chen J.H., K.K. She, O.Y. Wong, J.L. Teng, W.C. Yam, S.K. Lau, P.C. Woo, V.C. Cheng and K.Y. Yuen. 2015. Use of MALDI Biotyper plus ClinProTools mass spectra analysis for correct identification of Streptococcus pneumoniae and Streptococcus mitis/oralis. J. Clin. Pathol. 68(8): 652–656.


Chung W.O., K. Young, Z. Leng and M.C. Roberts. 1999. Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J. Antimicrob. Chemother. 44: 329–335.


Doherty N., K. Trzcinski, P. Pickerill, P. Zawadzki and C.G. Dow¬son. 2000. Genetic diversity of the tet(M) gene in tetracycline-resis¬tant clonal lineages of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44: 2979–2984.


EUCAST. 2014. Breakpoint table for bacteria., 2015.12.01.


Giuliano S., G. Rubini, A. Conte, P. Goldoni, M. Falcone, A. Vena, M. Venditti and S. Morelli. 2012. Streptococcus anginosus group disseminated infection: case report and review of literature. Infez. Med. 20: 145–154.


Glazunova O.O., D. Raoult and V. Roux. 2010. Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus. Int. J. Syst. Evol. Microbiol. 60: 2140–2148.


Hoe N.P., R.M. Ireland, F.R. DeLeo, B.B. Gowen, D.W. Dorward, J.M. Voyich, M. Liu, E.H. Burns Jr., D.M. Culnan, A. Bretscher and others. 2002. Insight into the molecular basis of pathogen abun¬dance: group A Streptococcus inhibitor of complement inhibits bac¬terial adherence and internalization into human cells. Proc. Natl. Acad. Sci. USA 99: 7646–7651.


Kohler W. 2007. The present state of species within the genera Strep¬tococcus and Enterococcus. Int. J. Med. Microbiol. 297: 133–150.


Laupland K.B., T. Ross, D.L. Church and D.B. Gregson. 2006. Population-based surveillance of invasive pyogenic streptococcal infection in a large Canadian region. Clin. Microbiol. Infect. 12: 224–230.


Obszanska K., I. Kern-Zdanowicz and I. Sitkiewicz. 2014. Viru¬lence mechanisms factors and pathogenic of β-hemolytic strepto¬cocci (in Polish). Post. Mikrobiol. 53: 101–111.


Obszanska K., I. Kern-Zdanowicz and I. Sitkiewicz. 2015a. MLVF analysis of anginosus (milleri) group streptococci. Diagn. Microbiol. Infect. Dis. 83(2): 124–129.


Obszanska K., I. Kern-Zdanowicz and I. Sitkiewicz. 2015b. Opti¬mized Protocol for PFGE Analysis of Anginosus (milleri) Strepto¬cocci. Pol. J. Microbiol. 64: 61–64.


Olson A.B., H. Kent, C.D. Sibley, M.E. Grinwis, P. Mabon,C. Ouellette, S. Tyson, M. Graham, S.D. Tyler, G. Van Domselaar and others. 2013. Phylogenetic relationship and virulence inference of Streptococcus anginosus group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics 14: 895.


Picard F.J., D. Ke, D.K. Boudreau, M. Boissinot, A. Huletsky,D. Richard, M. Ouellette, P.H. Roy and M.G. Bergeron. 2004.Use of tuf sequences for genus-specific PCR detection and phylo¬genetic analysis of 28 streptococcal species. J. Clin. Microbiol. 42: 3686–3695.


Poyart C., G. Quesne, S. Coulon, P. Berche and P. Trieu-Cuot. 1998. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J. Clin. Microbiol. 36: 41–47.


Reissmann S., C. Friedrichs, R. Rajkumari, A. Itzek, M. Fulde, A.C. Rodloff, K.N. Brahmadathan, G.S. Chhatwal and D.P. Nitsche--Schmitz. 2010. Contribution of Streptococcus anginosus to infec¬tions caused by groups C and G streptococci, southern India. Emerg. Infect. Dis. 16: 656–663.


Siegman-Igra Y., Y. Azmon and D. Schwartz. 2012. Milleri group streptococcus-a stepchild in the viridans family. Eur. J. Clin. Micro-biol. Infect. Dis. 31: 2453–2459.


Sitkiewicz I. and W. Hryniewicz. 2010. Pyogenic streptococci-danger of re-emerging pathogens. Pol. J. Microbiol. 59: 219–226.


Szczypa K., J. Wilemska, W. Hryniewicz and I. Sitkiewicz. 2012. Patogenicity mechanisms of Streptococcus pyogenes (in Polish). Post. Mikrobiol. 51: 3–15.


Takahashi S., Y. Nagano, N. Nagano, O. Hayashi, F. Taguchi andY. Okuwaki. 1995. Role of C5a-ase in group B streptococcal resis¬tance to opsonophagocytic killing. Infect. Immun. 63: 4764–4769.


Takao A., H. Nagamune and N. Maeda. 2004. Identification of the anginosus group within the genus Streptococcus using polymerase chain reaction. FEMS Microbiol. Lett. 233: 83–89.


Thompson C.C., V.E. Emmel, E.L. Fonseca, M.A. Marin andA.C. Vicente. 2013. Streptococcal taxonomy based on genome sequence analyses. F1000Res. 2: 67.


Trzcinski K., B.S. Cooper, W. Hryniewicz and C.G. Dowson. 2000. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 45: 763–770.


Voyich J.M., K.R. Braughton, D.E. Sturdevant, C. Vuong, S.D. Kobayashi, S.F. Porcella, M. Otto, J.M. Musser and F.R. DeLeo.2004. Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J. Immunol. 173: 1194–1201.


Wanahita A., E.A. Goldsmith, D.M. Musher, J.E. Clarridge, 3rd,J. Rubio, B. Krishnan and J. Trial. 2002. Interaction between human polymorphonuclear leukocytes and Streptococcus milleri group bacteria. J. Infect. Dis. 185: 85–90.


Whiley R.A. and D. Beighton. 1991. Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int. J. Syst. Bacteriol. 41: 1–5.


Whiley R.A., D. Beighton, T.G. Winstanley, H.Y. Fraser andJ.M. Hardie. 1992. Streptococcus intermedius, Streptococcus constel¬latus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J. Clin. Microbiol. 30: 243–244.


Woods K., D. Beighton and J.L. Klein. 2014. Identification of the ‘Streptococcus anginosus group’ by matrix-assisted laser desorption ionization--time-of-flight mass spectrometry. J. Med. Microbiol. 63: 1143–1147.


Zbinden A., N. Kohler and G.V. Bloemberg. 2011. recA-based PCR assay for accurate differentiation of Streptococcus pneumoniae from other viridans streptococci. J. Clin. Microbiol. 49: 523–527.