Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 1 (March 2016) > List of articles

Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches

Murat Ozdal / Ozlem Gur Ozdal * / Omer Faruk Algur

Keywords : α-endosulfan, biodegradation, cockroaches, isolation

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 1, Pages 63-68, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 09-September-2014 / Accepted: 08-October-2015 / Published Online: 15-March-2016



Extensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, bio­chemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5% , 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.

Content not available PDF Share



Bajaj A., A. Pathak, M.R. Mudiam, S. Mayilraj and N. Manickam. 2010. Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α‐endosulfan and endosulfan sulfate. J. Appl. Microbiol. 109: 2135–2143.


Basile F., M.B. Beverly and K.J. Voorhees. 1998. Pathogenic bacte¬ria: their detection and differentiation by rapid lipid profiling with pyrolysis mass spectrometry. Trends Analyt. Chem. 17: 95–109.


Benson H.J. 2001. Microbiological Applications Laboratory Manual. Laboratory Manual for General Microbiology. Eighth Edition. The McGraw-Hill Companies, New York.


Bhattacharjee K., S. Banerjee, L. Bawitlung, D. Krishnappa and S.R. Joshi. 2014. A study on parameters optimization for degrada¬tion of endosulfan by bacterial consortia isolated from contaminated soil. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 84: 657–6676.


Castillo J.M., J. Casas and E. Romero. 2011. Isolation of an endo¬sulfan-degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci. Total Environ. 412: 20–27.


David F., B. Tienpont and P. Sandra. 2008. Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode. J. Sep. Sci. 31: 3395–3403.


De Boever P., P. Ilyin, V. Forget-Hanus, G. Van der Auwera,J. Mahillon and M. Mergeay. 2007. Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. Microgravity Sci. Technol. 19: 5–6.


De Gelder L., J.J. Williams, J.M. Ponciano, M. Sota and E.M. Top. 2008. Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 178: 2179–2190.


Dillon R.J. and V.M. Dillon. 2004. The gut bacteria of insects: non¬pathogenic interactions. Annu. Rev. Entomol. 49: 71–92.


Dorough, H.W., K. Huhtanen, T.C. Marshall and H.E. Bryant. 1978. Fate of endosulfan in rats and toxicological considerations of apolar metabolites. Pestic Biochem. Physiol. 8: 241–252.


Fan S. 2007. Draft Endosulfan Risk Characterization Document: Volume III – Environmental Fate. Department of Pesticide Regula¬tion, Environmental Monitoring Branch, California Environmental Protection Agency: Sacramento, CA, USA.


Fang J., M.J. Barcelona and P.J.J. Alvarez. 2000. A direct compari¬son between fatty acid analysis and intact phospholipid profiling for microbial identification. Org. Geochem. 31: 881–887.


Fotedar R., U.B. Shriniwas and A. Verma. 1991. Cockroaches (Blattella germanica) as carriers of microorganisms of medical importance in hospitals. Epidemiol. Infect. 107: 181–187.


Giacomini M., C. Ruggiero and L. Calegari. 2000. Artificial neuralnetwork based identification of environmental bacteria by gas-chro-matographic and electrophoretic data. J. Microbiol. Methods 43: 45–54.


Gill S.R., M. Pop, R.T. DeBoy, P.B. Eckburg, P.J. Turnbaugh,B.S. Samuel, J.I. Gordon, D.A. Relman, C.M. Fraser-Liggett and K.E. Nelson. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359.


Goebel, H., Gorbach, S., Knauf, W., Rimpau, R.H. and H. Hutten¬bach. 1982. Properties, effects, residues and analytics of the insecticide endosulfan. Residue Rev. 83: 40–41.


Goswami S. and D.K. Singh. 2009. Biodegradation of a and b endo¬sulfan in broth medium and soil microcosm by bacterial strain Bor-detella sp. B9. Biodegradation 20: 199–207.


Gur O., M. Ozdal and O.F. Algur. 2014. Biodegradation of the syn¬thetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2. Turk. J. Biol. 38: 684–689.


Holt J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley and S.T. Williams. 1994. Bergey’s Manual of Determinative Bacteriology, 9th ed. Lip-pincott Williams and Wilkins, Baltimore.


Hussain S., M. Arshad, M. Saleem and A. Khalid. 2007. Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation 18: 731–740.


Hussain S., M. Arshad, B. Shaharoona, M. Saleem and A. Khalid. 2009. Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 25: 853–858.


Ikemoto S., H. Kuraishi, K. Komagata, R. Azuma, T. Suto and H. Muroka. 1978. Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24: 199–213.


Kaneda T. 1977. Fatty Acids of the Genus Bacillus: an Example of Branched-Chain Preference. Bacteriol Rev. 41: 391–418.


Kataoka R and K. Takagi. 2013. Biodegradability and biodegrada¬tion pathways of endosulfan and endosulfan sulphate. Appl. Micro¬biol. Biotechnol. 97: 3285–3292.


Kikuchi Y., M. Hayatsu, T. Hosokawa, A. Nagayama, K. Tago and T. Fukatsu. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. 109: 8618–8622.


Kong L., S. Zhu, L. Zhu, H. Xie, K. Su, T. Yan, J. Wang, J. Wang,F. Wang and F. Sun. 2013. Biodegradation of organochlorine pesti¬cide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J. Envi¬ron. Sci. 25: 2257–2264.


Kumar K., S.S. Devi, K. Krishnamurthi, G.S. Kanade and T. Chakrabarti. 2007. Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere 68: 317–322.


Kumar A., N. Bhoot, I. Soni and P.J. John. 2014. Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech. 4: 467–475.


Lu Y., K. Morimoto, T. Takeshita, T. Takeuchi and T. Saito. 2000. Genotoxic effects of α-endosulfan and β-endosulfan on human HepG2 cells. Environ. Health Perspect. 108: 559–561.


Moss C.W., P.L. Wallace, D.G. Hollis and R.E. Weaver. 1988. Cul¬tural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J. Clin. Microbiol. 26: 484–492.


Okay S., M. Ozdal and E.B. Kurbanoğlu. 2013. Characterization, antifungal activity and cell immobilization of a chitinase from Ser¬ratia marcescens MO-1. Turk. J. Biol. 37: 639–644.


Ozdal M., U. Incekara, A. Polat, O. Gur, E.B. Kurbanoğlu and G.E. Tasar. 2012. Isolation of filamentous fungi associated with two common edible aquatic insects, Hydrophilus piceus and Dytiscus marginalis. J. Microbiol. Biotechnol. Food Sci. 2: 95–105.


Pai H., W.C. Chen and C.F. Peng. 2005. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica). Acta Trop. 93: 259–265.


Reeson A.F., T. Jankovic, M.L. Kasper, S. Rogers and A.D. Austin. 2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol. 12: 85–91.


Siddique T., B.C. Okeke, M. Arshad and W.T.J. Frankenberger. 2003. Enrichment and isolation of endosulfan degrading microor-ganisms. J. Environ. Qual. 32: 47–54.


Singh N.S. and D.K. Singh. 2011. Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22: 845–857.


Sutherland T.D., I. Horne, M.J. Lacey, R.L. Harcourt, R.J. Russell and J.G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822–2828.


Thangadurai P. and S. Suresh. 2014. Biodegradation of endosulfan by soil bacterial cultures. Int. Biodeterior. Biodegradation 94: 38–47.


Vancanneyt M., S. Witt, W.R. Abraham, K. Kersters and H.L. Fred¬rickson. 1996. Fatty acid content in wholecell hycrolysates and phos¬pholipid fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 19: 528–540.


Verma A., D. Ali, M. Farooq, A.B. Pant, R.S. Ray and R.K. Hans. 2011. Expression and inducibility of endosulfan metabolizing gene in Rhodococcus strain isolated from earthworm gut microflora for its application in bioremediation. Bioresour. Technol. 102: 2979–2984.


Werren J.H. 2012. Symbionts provide pesticide detoxification. Proc. Natl. Acad. Sci. 109: 8364–8365.


Whittaker P., C.E. Keys, E.W. Brown and F.S. Fry. 2007. Differen¬tiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles. J. Agric. Food Chem. 55: 4617–4623.


Yu F.B., W.A. Shinawar, J.Y. Sun and L.P. Luo. 2012. Isolation and characterization of an endosulfan degrading strain, Stenotrophomonas sp. LD-6, and its potential in soil bioremediation. Pol. J. Microbiol. 61: 257–262.