Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

2
Reader(s)
9
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 2 (June 2016) > List of articles

Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies

Andrzej Borkowski / Filip Owczarek / Mateusz Szala / Marek Selwet *

Keywords : Pseudomonas putida, Staphylococcus aureus, adsorption, ceramic nanomaterials, loss of viability

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 2, Pages 161-170, DOI: https://doi.org/10.5604/17331331.1204475

License : (CC BY-NC-ND 4.0)

Received Date : 22-June-2015 / Accepted: 16-November-2015 / Published Online: 07-June-2016

ARTICLE

ABSTRACT

This paper presents the interactions of Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas putida) bacteria with ceramic materials obtained by combustion synthesis. These studies were conducted based on an analysis of the adsorption of bacteria onto aggregates of ceramic materials in an aqueous suspension. The materials used in the studies were of a nanostructured nature and consisted mainly of carbides: silicon carbide (SiC) in the form of nanofibers (NFs) and nanorods (NRs), titanium carbide, and graphite, which can also be formed by combustion synthesis. Micrometric SiC was used as a reference material. Gram-positive bacteria adsorbed more strongly to these materials. It seems that both the point of zero charge value and the texture of the ceramic material affected the bacterial adsorption process. Additionally, the viability of bacteria adsorbed onto aggregates of the materials decreased. Generally, P. putida cells were more sensitive to the nanomaterials than S. aureus cells. The maximum loss of viability was noted in the case of bacteria adsorbed onto NRSiC and NFSiC aggregates.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Akhavan O. and E. Ghaderi. 2010. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4: 5731–5736.

 

Akhavan O., M. Abdolahad, Y. Abdi and S. Mohajerzadeh. 2011. Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J. Mater Chem. 21: 387–393.

 

Ams D.A., J.B. Fein, H. Dong and P.A. Maurice. 2004. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains. Geomicrobiology J. 21: 511–519.

 

Barillet S., A. Simon-Deckers, N. Herlin-Boime, M. Mayne-L’Hermite, C. Reynaud, D. Cassio, B. Gouget and M. Carrière. 2010. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J. Nanopart Res. 12: 61–73.

 

Borkowski A., M. Szala and T. Cłapa. 2015. Adsorption studies of the Gram-negative bacteria onto nanostructured silicon carbide. Appl. Biochem. Biotechnol. 175: 1448–1459.

 

Bourikas K., J. Vakros, C. Kordulis and A. Lycourghiotis. 2003. Potentiometric mass titrations: experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr)oxides. J. Phys. Chem. B. 107: 9441–9451.

 

Cadet J.T., T. Delatour, D. Douki, J. Gasparutto, J. Pouget,S. Ravanat and S. Sauvaigo. 1999. Hydroxyl radicals and DNA base damage. Mutat Res. 424: 9–21.

 

Cudziło S., M. Szala, A. Huczko and M. Bystrzejewski. 2007. Combustion reactions of poly(carbon monofluoride), (CF)n with different reductants and characterization of products. Propellants, Explosives, Pyrotechnics 32: 149–154.

 

Farre M., K. Gajda-Schrantz, L. Kantiani and D. Barcelo. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393: 81–95.

 

Fenoglio I., M. Tomatis, D. Lison, J. Muller, A. Fonseca, B.J. Nagyand B. Fubini. 2006. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic. Biol. Med. 40: 1227–1233.

 

Hossain F., O.J. Perales-Perez, S. Hwang and F. Roman. 2014. Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466–467: 1047–1059.

 

Huczko A., M. Bystrzejewski, H. Lange, A. Fabianowska, S. Cudziło, A. Panas and M. Szala. 2005. Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B. 109: 16244–16251.

 

Jiang D., G. Huang, P. Cai P, X. Rong, and W. Chen. 2007. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Coll. Surf. B: Biointerf. 54: 217–221.

 

Joseph L., J.R.V. Flora, Y.G. Park, M. Badawy, H. Saleh and Y. Yoon. 2012. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and Purification Technology. 95: 64–72.

 

Kang S., M. Pinault, L.D. Pfefferle L.D and M. Elimelech. 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 23: 8670–8673.

 

Kang S., M. Herzberg, D.F. Rodrigues and M. Elimelech. 2008a. Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24: 6409–6413.

 

Kang S., M.S. Mauter and M. Elimelech. 2008b. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42: 7528–7534.

 

Li Q., S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li and P.J.J. Alvarez. 2008. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42: 4591–4602.

 

Liu S., T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang,J. Kong and Y. Chen. 2011. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 5: 6971–6980.

 

Lyon D.Y., L.K. Adams, J.C. Falkner and P.J.J. Alvarez. 2006. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 40: 4360–4366.

 

Qu X., P.J.J. Alvarez and Q. Li. 2013. Application of nanotechnology in water and wastewater treatment. Water Res. 47: 3931–3946.

 

Reddy A.R.N., Y.N. Reddy, D.R. Krishna and V. Himabindu. 2010. In vitro cytotoxicity of multi-wall carbon nanotubes on human cell lines. Toxicol. Environ. Chem. 92: 1697–1703.

 

Rivera-Utrilla J., I. Bautista-Toledo, M.A. Ferro-Garcia andC. Moreno-Castilla. 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 76: 1209–1215.

 

Rong X., Q. Huang, X. He, H. Chen H, P. Cai and W. Liang. 2008. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Coll. Surf. B Biointerf. 64: 49–55.

 

Savage N. and M.S. Diallo. 2005. Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7: 331–342.

 

Singh A.V., V. Vyas, R. Patil R, V. Sharma, P.E. Scopelliti,G. Bongiorno, A. Podestà A, C. Lenardi, W.N. Gade and P. Milani. 2011. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE 6(9): e25029.

 

Su R., Y. Jin, M. Tong and H. Kim. 2013. Bactericidal activity of Ag-doped multi-walled carbon nanotubes and the effects of extracellular polymeric substances and natural organic matter. Coll. Surf. B. Biointerf. 104: 133–139.

 

Szala M. 2010. Hexachloroethane as an efficient oxidizer in combustion synthesis of carbonaceous and ceramic nanostructures. International Journal of Self-Propagating High-Temperature Synthesis 19: 28–33.

 

Szala M. and A. Borkowski. 2014. Toxicity assessment of SiC nanofibers and nanorods against bacteria. Ecotoxicol. Environ. Saf. 100: 287–293.

 

van der Wal A., W. Norde, A.J.B. Zehnder and J. Lyklema. 1997. Determination of the total charge in the cell walls of Gram-positive bacteria. Coll. Surf. B: Biointerf. 9: 81–100.

 

Yamamoto O., K. Nakakoshi, T. Sasamoto, H. Nakagawa andK. Miura. 2001. Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide. Carbon 39: 1643–1651.

 

Yee N., J.B. Fein and C.J. Daughney. 2000. Experimental study of the pH, ionic strength, and reversibility behaviour of bacteria-mineral adsorption. Geochim. Cosmochim. Acta 64: 609–617.

 

EXTRA FILES

COMMENTS