Genetic Variability and Proteome Profiling of a Radiation Induced Cellulase Mutant Mushroom Pleurotus florida


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 3 (August 2016) > List of articles

Genetic Variability and Proteome Profiling of a Radiation Induced Cellulase Mutant Mushroom Pleurotus florida

Chandran Sathesh-Prabu / Young-Keun Lee *

Keywords : Pleurotus florida, 2D-PAGE, AFLP, genetic variability, mushroom

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 3, Pages 271-277, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 23-September-2013 / Accepted: 11-February-2016 / Published Online: 26-August-2016



We report the genetic similarity changes between a mutant mushroom (Pleurotus florida, designated as PfCM4) having increased cellulo­lytic activity developed through radiation mutagenesis and its wild type by amplified fragment length polymorphism (AFLP). On average, 23 AFLP fragments were amplified per primer combination, and a total of 286 polymorphic fragments (78.57% polymorphism) with maxi­mal fragment length of 1365 base pairs (bp) were obtained. The genetic similarity between wild type and PfCM4 was found to be 22.30%. In addition, mycelial and secreted protein profiling by 2D-PAGE showed at least three and five different protein spots in the range of 25 kD to 100 kD, respectively, in PfCM4. It seems that the variation in genetic similarity and different expression of both mycelial and secreted proteins in PfCM4 in comparison to the wild type could likely be correlated with its increased cellulolytic activity effected by the irradiation.

Content not available PDF Share



Berne S., F. Pohleven, T. Turk and K. Sepcic. 2008. Induction of fruiting in oyster mushroom (Pleurotus ostreatus) by polymeric 3-alkylpyridinium salts. Mycol. Res. 112: 1085–1087.


Boominathan K., D.S. Balachandra, T.A. Randall and C.A. Reddy. 1990. Nitrogen-deregulated mutants of Phanerochaete chrysosporium-a lignin-degrading basidiomycete. Arch. Microbiol. 153: 260–265.


Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.


Chang S.T. 1999. World production of cultivated edible and medicinal mushrooms in 1997 with emphasis on Lentinus edodes (Berk) Sing in China. Int. J. Med. Mushrooms 1: 291–300.


Djajanegara I. and Harsoyo. 2009. Mutation study on white oyster mushroom (Pleurotus florida) using gamma (60Co) irradiation.


J. Chem. Nat. Resour. Eng. 4: 12–21.


Dubey H. and A. Grover. 2001. Current initiatives in proteomics research: the plant perspective. Curr. Sci. 80: 262–269.


Elliot T.J. and F.A. Langton. 1981. Strain improvement in the cultivated mushroom Agaricus bisporus. Euphytica 30: 175–182.


Flegg P.B., D.M. Spencer and D.A. Wood. 1985. The biology and technology of the cultivated mushroom. John Wiley & Sons, Toronto (eds.).


Fragner D., M. Zomorrodi, U. Kues and A. Majcherczyk. 2009. Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocelluloses. Electrophoresis 30: 2431–2441.


Fry R.C., M.S. Demott, J.P. Cosgrove, T.J. Begley, L.D. Samson and P.C. Dedon. 2006. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA. BMC Genomics 12: 313.


Issaq H.J. and T.D. Veenstra. 2008. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. BioTechniques 44: 697–700.


Harder A., R. Wildgruber, A. Nawrocki, S.J. Fey, P.M. Larsen and A. Gorg. 1999. Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20: 826–829.


Hernandez-Macedo M.L., A. Ferraz, J. Rodriguez, L.M.M. Ottoboni and M.P. De-Mello. 2002. Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes: differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis 23: 655–661.


Jose N. and K.K. Janardhanan. 2000. Antioxidant and antitumour activity of Pleurotus florida. Curr. Sci. 79:941−943.


Kim G.Y., M.G. Ha, T.H. Lee and J.D. Lee. 1999. Chemosystematics and molecular phylogeny of a new bioflocculant-producing Aspergillus strain isolated from Korean soil. J. Microbiol. Biotechnol. 9: 870–872.


Kim Y., M.P. Nandakumar and M.R. Marten. 2007. Proteomics of filamentous fungi. Trends Biotechnol. 25: 395–400.


Kwon H.J., Y.J. Park, Y.B. Yoo, S.Y. Park and W.S. Kong. 2007. Genetic variability and phylogenetic relationship among proton beam irradiated strains of Pleurotus ostreatus. J. Microbiol. Biotechnol. 17: 1041–1044.


Lakshman D.K., S.S. Natarajan, S. Lakshman, W.M. Garrett and A.K. Dhar. 2008. Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani. Mycologia 100: 867–875.


Lee Y.K. and H.H. Chang. 1999. Radiation sensitivity of basidiospore and mycelium in Pleurotus ostreatus. J. Korean Nuclear Soc. 31: 287–293.


Majer D., R. Mithen, B.G. Lewis, P. Vos and R.P. Oliver. 1996. The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol. Res. 100: 1107–1111.


Meng Y., C.S. Jiang and Y.Z. Zhang. 2003. AFLP fingerprinting map analysis of Pleurotus ostreatus. Yi Chuan Xue Bao. 30: 1140–1146.


Mueller U.G. and L. Wolfenbarger. 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389–394.


Nandakumar M.P., J. Shen, B. Raman and M.R. Marten. 2003. Solubilization of Trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for Two-dimensional electrophoresis. J. Proteome Res. 2: 89–93.


Okuda Y., S. Murakami. and T. Matsumoto. 2009. A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation. Genome 52: 438–446.


Okuda Y., J. Ueda, Y. Obatake, S. Murakami, Y. Fukumasa and T. Matsumoto. 2012. Construction of a genetic linkage map based on amplified fragment length polymorphism markers and develop-ment of sequence-tagged site markers for marker-assisted selection of the sporeless trait in the oyster mushroom (Pleurotus eryngii). Appl. Environ. Microbiol. 78: 1496–1504.


Park J.E., G.Y. Kim, H.S. Park, B.H. Nam, W.G. An, J.H. Cha, T.H. Lee and J.D. Lee. 2001. Phylogenetic analysis of caterpillar fungi by comparing ITS 1–5.8S-ITS 2 ribosomal DNA sequences. Mycobiol. 29: 121–131.


Patel Y., R. Naraian, K. Sunita, P. Abbasi and V.K. Singh. 2013. A new antibiotic resistant mutant of Pleurotus sajor-caju with improved expression of malate dehydrogenase enzyme. Int. J. Adv. Life Sci. 6: 36–43.


Pawlik A., G. Janusz, J. Koszerny, W. Malek. and J. Rogalski. 2012. Genetic diversity of the edible mushroom Pleurotus sp. by amplified fragment length polymorphism. Curr. Microbiol. 65: 438–445.


Sathesh-Prabu C. and Y.K. Lee. 2011. Mutation breeding of mushroom by radiation. J. Radiat. Ind. 5: 285–295.


Sathesh-Prabu C. and Y.K. Lee. 2012. Improvement of cellulolytic activity of Pleurotus florida through radiation mutagenesis. J. Radiat. Ind. 6: 181–188.


Shevchenko A., M. Wilm, O. Vorm. and M. Mann. 1996. Mass spectrometric sequencing of proteins from solver-stained polyacrylamide gels. Anal. Chem. 68: 850–858.


Slater R.J. 2000. Radioisotope technique. pp. 687–728. In: Wilson K and J. Walker (eds). Principle and Technique of Practical Biochemistry. 5th ed. Cambridge University Press, Cambridge.


Urbanelli S., V.D. Rosa, F. Punelli, D. Porretta, M. Reverberi, A.A. Fabbri and C. Fanelli. 2007. DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the Pleurotus eryngii complex. Appl. Gene. Mol. Biol. 74: 592–600.


Vos P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman M. Kuiper and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414.