Simultaneous Biodegradation of Phenol and n-Hexadecane by Cryogel Immobilized Biosurfactant Producing Strain Rhodococcus wratislawiensis BN38

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

3
Reader(s)
3
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 3 (August 2016) > List of articles

Simultaneous Biodegradation of Phenol and n-Hexadecane by Cryogel Immobilized Biosurfactant Producing Strain Rhodococcus wratislawiensis BN38

Alexander E. Hristov / Nelly E. Christova * / Lyudmila V. Kabaivanova / Lilyana V. Nacheva / Ivanka B. Stoineva / Petar D. Petrov

Keywords : Rhodococcus sp., biodegradation, immobilization, n-hexadecane, phenol

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 3, Pages 287-293, DOI: https://doi.org/10.5604/17331331.1215608

License : (CC BY-NC-ND 4.0)

Received Date : 20-October-2014 / Accepted: 11-February-2016 / Published Online: 26-August-2016

ARTICLE

ABSTRACT

The capability of the biosurfactant-producing strain Rhodococcus wratislawiensis BN38 to mineralize both aromatic and aliphatic xeno­biotics was proved. During semicontinuous cultivation 11 g/l phenol was completely degraded within 22 cycles by Rhodococcus free cells. Immobilization in a cryogel matrix was performed for the first time to enhance the biodegradation at multiple use. A stable simultaneous hydrocarbon biodegradation was achieved until the total depletion of 20 g/l phenol and 20 g/l n-hexadecane (40 cycles). The alkanotrophic strain R. wratislawiensis BN38 preferably degraded hexadecane rather than phenol. SEM revealed well preserved cells entrapped in the heterogeneous super-macroporous structure of the cryogel which allowed unhindered mass transfer of xenobiotics. The immobilized strain can be used in real conditions for the treatment of contaminated industrial waste water

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Abdel-Megeed A., N. Al-Harbi and S. Al-Deyab. 2010. Hexadecane degradation by bacterial strains isolated from contaminated soils. African J. Biotechnol. 9: 7487–7494.

 

American Public Health Association (APHA). 1999. American Water Works Association, Water Pollution Control Federation. Standard methods for the examination of water and wastewater. 20th ed. ASM Press, Washington, D. C.

 

Basha K.M., A. Rajendran and V. Thangavelu. 2010. Recent advances in the biodegradation of phenol: A review. Asian J. Exp. Biol. Sci. 1(2): 219–234.

 

Cameotra S.S. and P. Singh. 2009. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb. Cell Fact. 8: 16.

 

Dawson C., E. Godsiffe, I. Thompson, T. Ralebitso-Senior, K. Killham and G. Paton. 2007. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol. Biochem. 39: 164–177.

 

de Carvalho C.C. and M.M. da Fonseca. 2005. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 67: 715–726.

 

Finnerty W.R. 1992. The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol. 46: 193–218.

 

Kundu D., C. Hazra, N. Dandi and A. Chaudhari. 2013. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24(6): 775–793.

 

Kumar A., S. Kumar and S. Kumar. 2005. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC1194. Biochem. Eng. J. 22: 151–159.

 

Kumar P.G.N. and K.B. Sumangala. 2012. Fungal degradation of Azo dye-Red 3BN and optimization of physico-chemical parameters. ISCA J. Biol. Sci. 1: 17–24.

 

Li C., Y. Li, X. Cheng, L. Feng, C. Xi and Y. Zhang. 2013. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Biores. Technol. 131: 390–396.

 

Lozinsky V.I., I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid and B. Mattiasson 2003. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 21: 445–451.

 

Meggyes T. and F.G. Simon. 2000. Removal of organic and inorganic pollutants from groundwater using Permeable Reactive Barriers. Part 2. Engineering of permeable reactive barriers. Land Con-tam. Reclam. 8: 175–187.

 

Nair I.C., K. Jayachandran and S. Shashidha. 2008. Biodegradation of Phenol. African J. Biotechnol. 7: 4951–4958.

 

Pai S.L., Y.L. Hsu, N.M. Chong, C.S. Sheu and C.H. Chen. 1995. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Biores. Technol. 51: 37–42.

 

Pan Y.T., R.R. Drake and A.D. Elbein. 1996. Trehalose-P synthase of mycobacteria: its substrate specificity is affected by polyanions. Glycobiology 6: 453–461.

 

Prieto M., A. Hidalgo, C. Rodrigues-Fernandez, J. Serra and M. Llama. 2002. Biodegradation of phenol in synthetic and industrial waste by Rhodococcus erythropolis UPV-1 immobilized in an air stirred reactor with clarifier. Appl. Microbiol. Biotechnol. 58: 853–859.

 

Rosenberg M., D. Gutnick and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.

 

Quek E., Y.-P. Ting and H.M. Tan. 2006. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Biores. Technol. 97: 32–38.

 

Shetty K., I. Kalifathulla and G. Srinikethan. 2007. Performance of pulsed plate bioreactor for biodegradation of phenol. J. Hazard. Mater. 140: 346–352.

 

Sikkema J., J.A. de Bont and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201–222.

 

Soudi M.R. and N. Kolahchi. 2011. Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1. Progress Biol. Sci. 1: 31–40.

 

Sun J.-Q., L. Xu, Y.-Q. Tang, F.-M. Chen and X.-L. Wu. 2012. Simultaneous degradation of fenol and n-hexadecane by Acinetobacter strains. Biores. Technol. 123: 664–668.

 

Tambekar D.H., P.S. Bhorse and P.V. Gadakh. 2012. Biodegradation of phenol by native microorganisms isolated from Lonar Lake in Maharashtra State (India). Int. J. Life Sci. Pharma Res. 2(4): 26–30.

 

Tuleva B., N. Christova, R. Cohen, G. Stoev and I. Stoineva. 2008. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 104: 1703–1710.

 

Ullrich R. and M. Hofrichter. 2007. Enzymatic hydroxylation of aromatic compounds. Cell M ol. Life Sci. 64: 271–293.

 

van Beilen J.B. and E.G. Funhoff. 2007. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 74: 13–21.

 

van der Geize R. and L. Dijkhuizen. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7: 255–261.

 

Velickova E., P. Petrov, C.H. Tsvetanov, S. Kuzmanova, M. Cvetkovska and E. Winkelhausen. 2010. Entrapment of Saccharomyces cerevisiae cells in UV crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. React. Funct. Polym. 70: 908–915.

 

Yordanova G., D. Ivanova, T. Godjevrova and A. Krastanov. 2009. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane. Biodegrada-tion 20: 717–726.

 

Zhao Z., A. Selvam and J.W.-C. Wong. 2011. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Biores. Technol. 102: 3999–4007.

 

EXTRA FILES

COMMENTS