Characterization of Endolithic Culturable Microbial Communities in Carbonate Rocks from a Typical Karst Canyon in Guizhou (China)

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

15
Reader(s)
26
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 4 (December 2016) > List of articles

Characterization of Endolithic Culturable Microbial Communities in Carbonate Rocks from a Typical Karst Canyon in Guizhou (China)

Yuan Tang / Jian-Zhong Cheng / Bin Lian *

Keywords : endolithic bacteria, endolithic fungi, carbonate rock

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 4, Pages 413-423, DOI: https://doi.org/10.5604/17331331.1227667

License : (CC BY-NC-ND 4.0)

Received Date : 09-December-2015 / Accepted: 26-August-2016 / Published Online: 28-December-2016

ARTICLE

ABSTRACT

The endolithic environment is a ubiquitous habitat for microorganisms and a critical interface between biology and geology. In this study, a culture-based method and the phylogenetic analysis based on 16S rRNA and internal transcribed spacer (ITS) sequences were used to investigate the diversity of endolithic bacteria and fungi in two main types of carbonate rocks (namely dolomite and limestone) from Nanjiang Canyon in Guizhou karst area, China. The results of bacterial diversity indicated that all bacteria isolated from dolomite and limestone rocks were divided into 4 bacterial groups, including Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. For these two kinds of rocks, Proteobacteria was the first dominant group, and Gammaproteobacteria occupied the greatest proportion which might be closely related to Pseudomonas in phylogeny to be the most dominant genera after isolation. Actinobacteria and Bacillus bacteria were also widespread in these two kinds of rock environments. There were only 9 and 8 strains of fungi isolated from dolomite and limestone respectively, which all belonged to Ascomycota. To the best of our knowledge, this is the first report on diversity of endolithic culturable bacteria and fungi in carbonate rocks in Guizhou karst region. These microorganisms may play an important and unprecedented role in the carbonate rock weathering during the long history of geological evolution.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Altschul S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

 

Belgini D.R.B., R.S. Dias, V.M. Siqueira, L.A.B. Valadares,J.M. Albanese, R.S. Souza, A.P.R. Torres, M.P. Sousa, C.C. Silva, S.O. De Paula and others. 2014. Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages. World J. Microb. Biot. 30: 2689–2700.

 

Chen Y., B. Lian, Z.Y. Ying and Y. Tang. 2014. Weathering of carbonate rocks by biological soil crusts in Karst areas. J. Earth. Sci. 25: 662-667.

 

Cole J.R., B. Chai, T.L. Marsh, R.J. Farris, Q. Wang, S.A. Kulam, S. Chandra, D.M. McGarrell, T.M. Schmidt, G.M. Garrity and others. 2003. The ribosomal database project (rdp-ii): Previewing a new autoaligner that allows regular updates and the new pro-karyotic taxonomy. Nucleic Acids Res. 31: 442–443.

 

Cui Z.S., Q.L. Lai, C.M. Dong and Z.Z. Shao. 2008. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ. Microbiol. 8: 2138–2149.

 

De Leo F., A. Iero, G. Zammit and C.E. Urzì. 2012. Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int. J. Speleol. 2: 125–136.

 

Dong H.L., J.A. Rech, H.C. Jiang, H. Sun and B.J. Buck. 2007. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J. Geophys. Res. 112: 339–343.

 

Friedmann E.I. 1982. Endolithic microorganisms in the antarctic cold desert. Science 215: 1045–1053.

 

Gerrath J.F., J.A. Gerrath, U. Matthes and D.W. Larson. 2000. Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can. J. Bot. 78: 807–815.

 

Gorbushina A.A., K. Whitehead, T. Dornieden, A. Niesse,A. Schulte and J.I. Hedges. 2003. Black fungal colonies as units of survival: Hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can. J. Bot-Revue Canadienne Botan. 81: 131–138.

 

Gorbushina A.A., J. Heyrman, T. Dornieden, M. Gonzalez-Delvalle, W. E. Krumbein, L. Laiz, K. Petersen, C. Saiz-Jimenez and J. Swings. 2004. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of st. Martins Church (Greene-kreiensen, Germany). Int. Biodeterior. Biodegrad. 53: 13–24.

 

Gorbushina A.A. 2007. Life on the rocks. Environ. Microbiol. 9: 1613–1631.

 

Horath T. and R. Bachofen. 2009. Molecular characterization of an endolithic microbial community in Dolomite rock in the Central Alps (Switzerland). Microbial Ecol. 58: 290–306.

 

Huber T., G. Faulkner and P. Hugenholtz. 2004. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 20: 2317–2319.

 

Kimura M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

 

Krakova L., F. De Leo, L. Bruno, D. Pangallo and C. Urzi. 2015. Complex bacterial diversity in the white biofilms of the Catacombs of St. Callixtus in Rome evidenced by different investigation strategies. Environ. Microbiol. 84: 81–790.

 

Kumar S., K. Tamura and M. Nei. 2004. Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150–163.

 

Lian B., Y. Chen and Y. Tang. 2010. Microbes on carbonate rocks and pedogenesis in karst regions. J. Earth. Sci. 21: 293–296.

 

Lian B., D.X. Yuan and Z.H. Liu. 2011. Effect of microbes on karstification in karst ecosystems. Chinese Sci. Bull. 56: 3743–3747.

 

Ma Y.F., L. Wang and Z.Z. Shao. 2006. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ. Microbiol. 8: 455–465.

 

Papida S., W. Murphy and E. May. 2000. Enhancement of physical weathering of building stones by microbial populations. Int. Biodeterior. Biodegrad. 46: 305–317.

 

Roldan M., C. Ascaso and J. Wierzchos. 2014. Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama desert. Appl. Environ. Microbiol. 80: 2998–3006.

 

Selbmann L., E. Egidi, D. Isola, S. Onofri, G.S. de Hoog, S. Chinaglia, L. Testa, S. Tosi, A. Balestrazzi, A. Lantieri and others. 2013. Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst. 147: 237–246.

 

Sigler W.V., R. Bachofen and J. Zeyer. 2003. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ. Microbiol. 5: 618–627.

 

Spring S., N. Brinkmann, M. Murrja, C. Sproer, J. Reitner andH.P. Klenk. 2015. High diversity of culturable prokaryotes in a lithifying hypersaline microbial mat. Geomicrobiol. J. 32: 332–346.

 

Stackebrandt E. and J. Ebers. 2006. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 33: 1525–1155.

 

Sterflinger K. 2000. Fungi as geologic agents. Geomicrobiol. J. 17: 97–124.

 

Tamaki H., Y. Sekiguchi, S. Hanada, K. Nakamura, N. Nomura, M. Matsumura and Y. Kamagata. 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl. Environ. Microbiol. 71: 2162–2169.

 

Tang Y. and B. Lian. 2012. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China. Can. J. Microbiol. 58: 685–693.

 

Tang Y., B. Lian, H.L. Dong, D.F. Liu and W.G. Hou. 2012. Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou karst area (China). Geomicrobiol. J. 29: 213–225.

 

Thompson J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin andD.G. Higgins. 1997. The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

 

Viles H.A. and A.A. Gorbushina. 2003. Soiling and microbial coloniastion on urbon roadside limestone: A three year study in Oxford England. Build Environ. 38: 9–10.

 

Walker J.J. and N.R. Pace. 2007a. Endolithic microbial ecosystems. Annu. Rev. Microbiol. 61: 331–347.

 

Walker J.J. and N.R. Pace. 2007b. Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl. Environ. Microbiol. 73: 3497–3504.

 

Wierzchos J., C. Ascaso and C.P. McKay. 2006. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama desert. Astrobiology 6: 415–422.

 

Wong F.K.Y., M.C.Y. Lau, D.C. Lacap, J.C. Aitchison, D.A. Cowan and S.B. Pointing. 2010. Endolithic microbial colonization of limestone in a high-altitude arid environment. Microbial. Ecol. 59: 689–699.

 

EXTRA FILES

COMMENTS