Antistaphylococcal Activity of Selected Thiourea Derivatives


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 4 (December 2016) > List of articles

Antistaphylococcal Activity of Selected Thiourea Derivatives

Joanna Stefańska * / Karolina Stępień / Anna Bielenica / Małgorzata Wrzosek / Marta Struga

Keywords : antistaphylococcal activity, anti-biofilm activity, genotoxicity, thiourea derivatives

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 4, Pages 451-460, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 20-August-2015 / Accepted: 08-March-2016 / Published Online: 28-December-2016



Five of thiourea derivatives were prepared using as a starting compound 3-(trifluoromethyl)aniline, 4-chloro-3-nitroaniline, 1,3-thiazol-2-amine, 2H-1,2,3-triazol-4-amine and commercial isothiocyanates. All compounds were evaluated in vitro for antimicrobial activity. Derivatives 2 and 3 showed the highest inhibition against Gram-positive cocci (standard and hospital strains). The observed MIC values were in the range of 0.5–8 μg/ml. The products effectively inhibited the formation of biofilms of methicillin-resistant and standard strains of Staphylococcus epidermidis. Inhibitory activity of thioureas 2 and 3 against Staphylococcus aureus topoisomerase IV was studied. The examined compounds were nongenotoxic.

Content not available PDF Share



Agarwal A., K.P. Singh and A. Jain. 2010. Medical significance and management of staphylococcal biofilm. FEMS Immunol. Med. Microbiol. 58: 147–160.


Anderson V.E, T.D. Gootz and N. Osheroff. 1998. Topoisomerase IV catalysis and the mechanism of quinolone action. J. Biol. Chem. 273: 17879–17885.


Arciola C.R., D. Campoccia, S. Gamberini, M.E. Donati, V. Pirini, L. Visai, P. Speziale and L. Montanaro. 2005. Antibiotic resistance in expolysaccharide-forming Staphylococcus epidermidis clinical isolated from orthopedic implant infections. Biomaterial 26: 6530–6535.


Basarab G.S., J. Manchester, S. Bist, P.A. Boriack-Sjodin, B. Dangel, R. Illingworth, B.A. Sherer, S. Sriram, M. Uria-Nickelsen and A.E. Eakin. 2013. Fragment-to-hit-to-lead discovery of a novel pyri-dylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J. Med. Chem. 56: 8712–8735.


Bielenica A., J. Stefańska, K. Stępień, A. Napiórkowska, E. Augustynowicz-Kopeć, G. Sanna, S. Madeddu, S. Boi, G. Giliberti, M. Wrzosek and othres. 2015. Synthesis, cytotoxicity, antimicrobial activity of thiourea derivatives incorporatinf 3-(trifluoromethyl) phenyl moiety. Eur. J. Med. Chem. 101: 111–125.


Bridier A., R. Brandet, V. Thomas and F. Dubois-Brissonnet. 2011. Resistance of bacterial biofilms to desinfectants: a review. Biofouling 27: 1017–1032.


Chambers H.F. and F.R. DeLeo. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic area. Nat. Rev. Microbiol. 7: 629–641.


Chikhalia K.H. and M.J. Patel. 2009. Design, synthesis and evaluation of some 1,3,5-triazinyl urea and thiourea derivatives as antimicrobial agents. J. Enz. Inhib. Med. Chem. 24: 960–966.


Clinical and Laboratory Standards Institute (CLSI). 1999. Methods for determining bactericidal activity of antimicrobial agents – approved guideline M26-A. Wayne, Pennsylvania, USA.


Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically – approved Standard M7-A9. Pennsylvania, USA.


Costerton J.W., P.S. Stewart and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.


Cunha S., F.C. Macedo Jr., G.A.N Costa, M.T. Rodrigues Jr., R.B.V. Verde, L.C de Souza Neta, I. Vencato, C. Lariucci and F.P. Sá. 2007. Antimicrobial activity and structural study of disubstituted thiourea derivatives. Monatsh. Chem. 138: 511–516.


Donlan R.M. 2001. Biofilms and device – associated infections. Emerg. Infect. Disc. 7: 277–281.


Donlan R.M. and J.W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167–193.


Ehmann D.M. and S.D. Lahiri. 2014. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr. Opin. Pharmacol. 18: 76–83.


Faidallah H.M., S.A. Rostom, S.A. Basaif, M.S. Makki and K.A. Khan. 2013. Synthesis and biological evaluation of some novel urea and thiourea derivatives of isoxazolo[4,5-d]pyridazine and structurally related thiazolo[4,5-d]pyridazine as antimicrobial agents. Arch. Pharm. Res. 36: 1354–1368.


Fournier B., X. Zhao, T. Lu, K. Drlica and D.C. Hooper. 2000. Selective Targeting of Topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob. Agents Chemother. 44: 2160–2165.


Heczko P.B., M. Wróblewska and A. Pietrzyk (eds). 2014. Microbiology (in Polish). Wydawnictwo Lekarskie PZWL, Warszawa.


Høiby N., T. Bjarnsholt, M. Givscov, S. Molin and O. Ciofu. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35: 322–332.


Kada T., K. Hirano and Y. Shirasu. 1980. Bacillus subtilis recassay test. In: Seeres F.J. and A. Hollaender (eds). Chemical Mutagens 6: 149–173.


Keche A.P., G.D. Hatnapure, R.H. Tale, A.H. Rodge and V.M. Kamble. 2012. Synthesis, anti-inflammatory and antimicrobial evaluation of novel 1-acetyl-3,5-diaryl-4,5-dihydro (1H) pyrazole derivatives bearing urea, thiourea and sulfonamide moieties. Bioorg. Med. Chem. Lett. 22: 6611–6615.


Leclercq R. 2009. Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin. Microbiol. Infect. 15: 224–231.


Mack D., H. Rohde, L.G. Harris, A.P. Davies, M.A. Horstkotte and J.K. Knobloch. 2006. Biofilm formation in medical device-related infection. Int. J. Artif. Organs 29: 343–359.


Maki D.G., D.M. Kluger and C.J. Crinch. 2006. The risk of bloodstream infection in adults with different intravascular devices. A systematic review of 200 published prospective studies. Mayo Clin. Proc. 81: 1159–1171.


Meng C., Y. Qingsong and S. Hongmin. 2013. Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci. 14: 18488–18501.


Mishra A. and S. Batra. 2013. Thiourea and guanidine derivatives as antimalarial and antimicrobial agents. Curr. Top. Med. Chem. 13: 2011–2025.


Otto M. 2008. Staphylococcal biofilms. Curr. Top Microbiol. Immunol. 322: 207–228.


Otto M. 2009. Staphylococcus epidermidis – The “accidental” pathogen. Nat. Rev. Microbiol. 7: 555–557.


Ranise A., A. Spallarossa, S. Schenone, O. Bruno, F. Bondavalli, L. Vargiu, T. Marceddu, M. Mura, P. La Colla and A. Pani. 2003. Design, synthesis, SAR, and molecular modeling studies of acylthio-carbamates: a novel series of potent non-nucleoside HIV-1 reverse transcriptase inhibitors structurally related to phenethylthiazolylthiourea derivatives. J. Med. Chem. 46: 768–781.


Sadaie Y. and T. Kada. 1976. Recombination-deficient mutants of Bacillus subtilis. J. Bacteriol. 125: 489–500.


Saeed A., U. Shaheen, A. Hameed and S.H.Z. Naqvi. 2009. Synthe- sis, characterization and antimicrobial activity of some new 1-(fluoro-benzoyl)-3-(fluorophenyl)thioureas. J. Fluor. Chem. 130: 1028–1034.


Saeed S., N. Rashid, P.G. Jones, M. Ali and R. Hussain. 2010. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 45: 1323–1331.


Siwek A., P. Stączek and J. Stefańska. 2011. Synthesis and structure-activity relationship studies of 4-arylthiosemicarbazides as topoisomerase IV inhibitors with Gram-positive antibacterial activity. Search for molecular basis of antibacterial activity of thiosemicarbazides. Eur. J. Med. Chem. 46: 5717–5726.


Stefańska J., G. Nowicka, Struga M, D. Szulczyk, A.E. Kozioł, E. Augustynowicz-Kopeć, A. Napiórkowska, A. Bielenica, W. Filipowski and others. 2015. Antimicrobial and anti-biofilm activity of thiourea derivatives incorporating a 2-aminothiazole scaffold. Chem. Pharm. Bull. 63: 1–12.


Struga M., S. Rosołowski, J. Kossakowski and J. Stefańska. 2010. Synthesis and microbiological activity of thiourea derivatives of 4-azatricyclo[,6)]undec-8-ene-3,5-dione. Arch. Pharm. Res. 33: 47–54.


Suresha G.P., R. Suhas, W. Kapfo and D.C. Gowda. 2011. Urea/ thiourea derivatives of quinazolinone-lysine conjugates: synthesis and structure-activity relationships of a new series of antimicrobials. Eur. J. Med. Chem. 46: 2530–2540.


Vega-Pérez J.M., I. Periñán, M. Argandoña, M. Vega-Holm, C. Palo-Nieto, E. Burgos-Morón, M. López-Lázaro, C. Vargas, J.J. Nieto and F. Iglesias-Guerra. 2012. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 58: 591–612.